• Главная
  • О нас
  • Новости
  • Продукция и услуги
    • Строительные материалы и ЖБИ
    • Услуги строительной техники
    • Прайс-лист
  • Контакты
  • Заказать online
  • Полезная информация

ГлавнаяРазноеПроцент армирования железобетонных конструкций

Определение эффективных параметров армирования железобетонных конструкций. Процент армирования железобетонных конструкций


Назначение и виды арматуры. Процент армирования железобетонных конструкций.

Подробности Категория: Шпоры к ГОСу по промышленному и гражданскому строительству

Арматуру в железобетонных конструкциях устанавливают преимущественно для восприятия растягивающих усилий и усиления бетона сжатых зон конструкций. Необходимое количество арматуры определяют расчетом элементов конструкций на нагрузки и воздействия. Арматура, устанавливаемая по расчету, называется рабочей; устанавливаемая по конструктивным и технологическим соображениям – монтажной. Монтажная арматура обеспечивает проектное положение рабочей арматуры в конструкции и более равномерно распределяет усилия между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчетом усилия от усадки бетона, изменения температуры конструкции и т. п. Рабочую и монтажную арматуру объединяют в арматурные изделия – сварные и вязаные сетки и каркасы, которые размещают в железобетонных элементах в соответствии с характером их работы под нагрузкой.

Арматуру классифицируют по 4 признакам.

В зависимости от технологии изготовления различают стержневую и проволочную арматуру. Под стержневой в данной классификации подразумевают арматуру любого Æ в пределах 6-40 мм, причем независимо от того, как она поставляется промышленностью – в прутках (Æ > 12 мм, длиной до 13 м) или в мотках (бунтах) (Æ < 10 мм, массой до 1300 кг). В зависимости от способа последующего упрочнения горячекатанная арматура может быть термически упрочненной, т. е. подвергнутой термической обработке, или упрочненной в холодном состоянии – вытяжкой, волочением. По форме поверхности арматура бывает периодического профиля и гладкой. Выступы в виде ребер на поверхности стержневой арматуры периодического профиля, рифы или вмятины на поверхности проволочной арматуры значительно улучшают сцепление с бетоном. По способу применения при армировании железобетонных элементов различают напрягаемую арматуру, т. е. подвергаемую предварительному натяжению, и ненапрягаемую.

Предельный % армирования с повышением класса арматуры уменьшается. Сечения изгибаемых элементов, имеющие % армирования, превышающий предельный, называют переармированными. Нижний предел % армирования (минимальный % армирования) установлен в нормах из конструктивных соображений для восприятия не учитываемых расчетом различных усилий (усадочных, температурных и т. п.). для изгибаемых и внецентренно растянутых прямоугольных сечений шириной b, высотой h минимальный % армирования продольной растянутой арматурой m1=0,05%. Предельный % армирования изгибаемых элементов с одиночной арматурой (расположенной только в растянутой зоне) определяют из уравнения равновесия предельных усилий при высоте сжатой зоны, равной граничной. Для прямоугольного сечения:

ssR=sscu=Rs:

 

 

 

cities-blago.ru

60. Каковы особенности расчета переармированных сечений? Чем определяется максимальный и минимальный процент армирования?

Предельный процент армирования изгибаемых эле­ментов с одиночной арматурой (расположенной только в растянутой зоне) определяют из уравнения равновесия предельных усилий RbbxR -RsAsp =0 при высоте сжатой зоны, рав­ной граничной. При этом для прямоугольного сечения RbbxR-RsAsp=0. Отсюда µ=100ξR(Rb/Rs)

Предельный процент армирования с учетом значения ξrпо формуле для предварительно напряженных элементов

µ=100ωRb/[(1+(σsr/σscu)(1-ω/1.1)Rs] для элементов без предварительного напряжения при σsr=σscu=Rs :

µ=100ωRb/[2(1-ω/1.1)Rs]

Предельный процент армирования с повышением класса арматуры уменьшается. Сечения изгибаемых эле­ментов, имеющие процент армирования, превышающий предельный, называют переармированными.

Нижний предел процента армирования установлен в нормах из конструктивных соображений для восприятия не учиты­ваемых расчетом различных усилий (усадочных, темпе­ратурных и т. п.). Для изгибаемых и внецентренно растя­нутых прямоугольных сечений шириной b, высотой h ми­нимальный процент армирования продольной растянутой арматурой µ1 =0,05 %; для внецентренно растянутых элементов в случае

В тавровых сечениях с полкой в сжатой зоне мини­мальный процент армирования относится к площади се­чения ребра, равной b*h.

61. Выведите формулы для расчета прямоугольных сечений изгибаемых элементов с двойной арматурой. Какие условия обеспечивают прочность изгибаемых элементов прямоугольного профиля с двойной арматурой (рассмотрите 2 типа задач)?

Элементы с двойной арматурой – это такие элементы, у которых арматуру по расчету устанавливают в растянутой и сжатой зонах.

Сжатую арматуру устанавливают по расчету, когда прочность бетона сжатой зоны недостаточна, т.е. когда x£xR.

Элементы с двойной арматурой требуют повышенного расхода стали, поэтому их применение должно быть обосновано. Двойную арматуру приходиться принимать, когда сечение элемента ограничено и невозможно увеличение класса бетона. Сжатую арматуру устанавливают также при воздействии на элемент изгибающих моментов двух знаков (неразрезные конструкции и т.д.), а также для уменьшения эксцентриситета предварительного обжатия в преднапряженных элементах.

Формулы для расчета нормальных сечений элементов с двойной арматурой получены из тех же условий, что и для элементов с одиночной.(рис)

Прочность сечения будет обеспечена, если расчетный момент от внешней нагрузки не превысит расчетного момента внутренних усилий, или, иначе, SМ = 0.

Уравнение равенства моментов относительно центра тяжести растянутой арматуры:

M £ Nb × (h0 - x/2) + Ns’ × (h0 – a’) или M £ Rb × b × x × (h0 - x/2) + Rsc × As’ × (h0 – a’)

и уравнение равенства моментов относительно центра тяжести сжатой зоны бетона:

M £ Ns × (h0 - x/2) + Ns’ × (x/2 - a’) или M £ ss × As × (h0 - x/2) + Rsc × As’ × (x/2 - a’)

где а’ – расстояние от сжатой грани сечения до центра тяжести сжатой арматуры;

As’ – площадь сечения сжатой арматуры.

Составляется также вспомогательное уравнение равенства нулю суммы проекций усилий на продольную ось элемента:

Nb × b × x + Ns’ × As’ – Ns × As = 0 или ss × As = Rb × b × x + Rsc × As’ .

Исследования показали, что сечение будет наиболее экономичным, когда на бетон передается максимально возможное сжимающее усилие. Это будет иметь место при x=xR. В этом случае площади сжатойAs’ и растянутойAsарматуры определяют приведенных уравнений, принимаяx=xR=xR×h0. Таким образом:

Rsc×As’×(h0–a’) =M-Rb×b×xR×(h0-xR/2)

Rs × As = Rb × b × xR + Rsc × As’

Задача типа 1. Заданы размеры b и h. Требуется определить площадь сечения арматуры As и As’.

As’= [M - Rb × b × xR × (h0 - xR/2)]/[ Rsc-(h0 – a’)]

As= [Rb × b × xR + Rsc × As’]/Rs

Задача 2 типа. Заданы размеры сечения b и h и площадь сечения сжатой арматуры As’. Определить площадь сечения арматуры As

αm = (M-Rsc·A’S·zs)/(b·h30·Rb) по таблице находим ξ, проверяя условие ξ< ξR.

AS=M/(ξ·h0·RS)=[As’·Rsc +ξ·b·h0·Rb]/Rs

Если αm> αR, заданного количества арматуры по площади сечения As’ недостаточно.

studfiles.net

Определение эффективных параметров армирования железобетонных конструкций

Леонид Скорук К.т.н., доцент, старший научный сотрудник НП ООО «СКАД Софт» (г. Киев).

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал/стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1­й (прочность, устойчивость), так и по 2­й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в килограммах на кубический метр (кг/м3)).

При этом в действующих строительных нормах [1­3] такой параметр напрочь отсутствует и никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05­0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой­то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190­200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0x1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100x100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м2 при различных исходных данных: а — при разных диаметрах арматуры; б — при разных толщинах плит

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Как видно из приведенных данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м3. При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры

Фактор

Следствие

Инженерно­геологические условия строительной площадки

Тип фундамента (свайный, плитный, ленточный)

Шаг сетки несущих вертикальных элементов

Пролет плит, их толщина (жесткость)

Размеры сечения колонн/пилонов/стен

Удельный вес арматуры в бетоне

Класс бетона и арматуры

Расход арматуры в сечении

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но заодно (что очень важно) и проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15­20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5­10%).

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 2. Содержание арматуры в бетоне для разных типов зданий

Тип здания

Элемент здания

Расход, кг/м3

а) 22­этажное здание на сваях (шаг колонн/пилонов 6,0 м)

Сваи

64

Фундаментная плита

392

Вертикальные несущие элементы

263

Плиты перекрытия

193

Всего по зданию

212

б) 10­этажное здание на сваях (шаг пилонов 3,4­3,6 м)

Сваи

70

Фундаментная плита

223

Вертикальные несущие элементы

148

Плиты перекрытия

129

Всего по зданию

148

в) 8­, 9­этажное здание на плите (шаг пилонов 4,5­4,8 м)

Фундаментная плита

238

Вертикальные несущие элементы

126

Плиты перекрытия

150

Всего по зданию

175

г) 2­этажное здание на сваях (шаг колонн/стен 4,5­8,0 м)

Сваи

83

Фундаментная плита

179

Вертикальные несущие элементы

118

Плиты перекрытия

170

Всего по зданию

147

В табл. 2 на различных типах реальных зданий и сооружений показано, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и т.д.

Более точно содержание арматуры в бетоне можно определить по формуле:

, где  

Са — содержание арматуры в бетоне для всего здания, кг/м3;

Сэ — содержание арматуры в бетоне для отдельных конструктивных элементов (фундаментная плита, плиты перекрытия и т.д.), кг/м3;

Υ э — удельный вес бетона отдельных конструктивных элементов в общем объеме бетона здания, %;

n — общее количество конструктивных элементов здания.

Выводы

Всё вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3) для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.

Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.

С помощью новых функций, реализованных в 21­й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но гораздо более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.

Литература:

  1. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52­01­2003).
  2. СП 52­101­2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
  3. Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 52­101­2003).
  4. ГЭСН 81­02­06­2001.
  5. ФЕР 06­01­001­17. 

sapr.ru

Статья "Определение эффективных параметров армирования железобетонных конструкций" из журнала CADmaster №3(85) 2016

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал — стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1-й группе (прочность, устойчивость), так и по 2-й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в кг/м3).

При этом в действующих строительных нормах [1−3] такой параметр напрочь отсутствует и он никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05−0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой-то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190- 200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Как видно из приведенных выше данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м3. При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но и заодно (что очень важно) проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15−20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5−10%).
а)
б)

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м2 при различных исходных данных: а) при разных диаметрах арматуры, б) при разных толщинах плит

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры
Фактор Следствие
Инженерно-геологические условия строительной площадки Тип фундамента (свайный, плитный, ленточный)
Шаг сетки несущих вертикальных элементов Пролет плит, их толщина (жесткость)
Размеры сечения колонн/пилонов/стен Удельный вес арматуры в бетоне
Класс бетона и арматуры Расход арматуры в сечении

В табл. 2 мы покажем на различных типах реальных зданий и сооружений, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и т.д.

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона» Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Более точно содержание арматуры в бетоне можно определить по формуле:

где
— содержание арматуры в бетоне для всего здания, кг/м3;
— содержание арматуры в бетоне для отдельных конструктивных элементов (фундаментная плита, плиты перекрытия и т.д.), кг/м3;
— удельный вес бетона отдельных конструктивных элементов в общем объеме бетона здания, %;
n — общее количество конструктивных элементов здания.
Таблица 2. Содержание арматуры в бетоне для разных типов зданий
Тип здания Элемент здания Расход, кг/м3
а) 22-этажное здание на сваях (шаг колонн/пилонов 6,0 м) Сваи 64
Фундаментная плита 392
Вертикальные несущие элементы 263
Плиты перекрытия 193
Всего по зданию 212
б) 10-этажное здание на сваях (шаг пилонов 3,4−3,6 м) Сваи 70
Фундаментная плита 223
Вертикальные несущие элементы 148
Плиты перекрытия 129
Всего по зданию 148
в) 8-, 9-этажное здание на плите (шаг пилонов 4,5−4,8 м) Фундаментная плита 238
Вертикальные несущие элементы 126
Плиты перекрытия 150
Всего по зданию 175
г) 2-этажное здание на сваях (шаг колонн/стен 4,5−8,0 м) Сваи 83
Фундаментная плита 179
Вертикальные несущие элементы 118
Плиты перекрытия 170
Всего по зданию 147

Выводы

  • Все вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3) для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.
  • Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.
  • С помощью новых функций, реализованных в 21-й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но намного более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.

Литература

  1. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52−01−2003).
  2. СП 52−101−2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
  3. Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 52−101−2003).
  4. ГЭСН 81−02−06−2001.
  5. ФЕР 06−01−001−17.
Леонид Скорук к.т.н., доц., старший научный сотрудник НП ООО «СКАД Софт» (г. Киев)

www.cadmaster.ru

Предельные проценты армирования

Железобетон

Предельные проценты армирования изгибаемых эле­ментов с одиночной арматурой (расположенной только в растянутой зоне) определяют из уравнения равновесия предельных усилий (11.40) при высоте сжатой зоны, рав­ной граничной. При этом для прямоугольного сечения

Rbbxv-RsAsP=-0, (11.47)

Отсюда

>1=100 Ly(Rb/Rs). (11.48)

Предельные проценты армирования с учетом значе­ния 1у по формуле (11.42) для предварительно напряжен­ных элементов

Ц = M"RB ш 49)

[1 + (ая/ой)(1-®/1,1)]/г,' для элементов без предварительного напряжения при

Osi = <Ts2=^?s

__100^_. (11.50)

И (2 — ш/1,1) Rs

Предельные проценты армирования с повышением класса бетона увеличиваются, а с повышением класса арматуры уменьшаются. Сечения изгибаемых элементов, имеющие проценты армирования, превышающие предель­ные, называют переармированными.

Нижний предел процента армирования, или мини­мальный процент армирования, установлен из конструк­тивных соображений для восприятия не учитываемых расчетом различных усилий (усадочных, температурных и т. п.). Для изгибаемых и внецентренно растянутых се­чений by(h минимальный процент армирования продоль­ной растянутой арматурой |xi =0,05 %; для внецентренно растянутых элементов при расположении продольной си­лы между арматурой в пределах расстояния Zs на каж­дой грани сечения |xi =0,05 %.

В тавровых сечениях с полкой в сжатой зоне мини­мальный процент армирования относится к площади се­чения ребра, равной b~Xh.

Сборный бетон и железобетон: особенности и методы производства

Индустриальные технологии активно развивались в СССР еще с середины прошлого века, а развитие строительной индустрии требовало большого количество различных материалов. Изобретение сборного железобетона стало своеобразной технической революцией в жизни страны, …

Сваебойка своими руками

Сваебойка или сваебой можно организовать с помощью автомобиля со снятым задним крылом(заднеприводный на механике), поднятый на домкрате и используя вместо колеса только обод. На обод будет наматываться трос - это …

РЕКОНСТРУКЦИЯ ПРОМЫШЛЕННЫХ ЗДАНИИ

1. Задачи и методы реконструкции зданий Реконструкция зданий может быть связана с расши­рением производства, модернизацией технологического. процесса, установкой нового оборудования и др. При этом приходится решать сложные инженерные задачи, связанные …

msd.com.ua


  • Почему бетон трескается
  • Чем приклеить к бетону вспененный полиэтилен
  • Что лучше керамические блоки или газобетон
  • Чем приклеить пластик к бетону
  • Асфальтобетонные смеси
  • Предварительно напряженные железобетонные конструкции
  • Балка бетонная
  • Разница цемент и бетон
  • Перекрытие бетонное
  • Изготовление пеноблоков
  • Газобетон или керамические блоки что лучше

 

ООО "ПАРИТЕТ" © 2018. Все права защищены. | Карта сайта