Влияние структуры пор на морозостойкость кирпича. Факторы влияющие на морозостойкость
Материаловедение | Факторы, влияющие на морозостойкость
Анализ механизма разрушения при замораживании показывает, что морозостойкость пористых строительных материалов связана, в основном, с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.
Водопоглощение – косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации (см. раздел 3.6). Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле
Кн = W0 /П,
где Кн – коэффициент насыщения, ед.;
W0 – водопоглощение по объему, %;
П – общая пористость материала, %.
Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые и W0 = П). Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.
Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.
Однако следует заметить, что в условиях замораживания, в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, которое меняет характер и механизм разрушения структуры.
Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, которое может быть достигнуто:
– путем снижения водопоглощения, за счет создания микропористой структуры с преимущественно замкнутыми порами;
– путем воздухововлечения, которое образует в материале воздушные резервуары, гасящие избыточное давление мигрирующей воды;
– путем введения в структуру материала высокодисперсного армирующего компонента, увеличивающего пластическую составляющую в целом упругой деформации.
Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала (DR/R), которая не должна превышать 25% или по потере массы (DM/M), которая не должна превышать 5%.
Показатель морозостойкости (марка) обозначается символами F15; F25; F50...F500, где цифры обозначают количество циклов замораживания и оттаивания материала при испытании.
Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в большей степени связано со сроками проведения испытаний. В табл. 4.14 представлены показатели морозостойкости некоторых строительных материалов.
Таблица 4.14
Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве
Материал | Водопоглощение, % | Плотность, г/см³ | Rразр., МПа | Морозостойкость, циклы |
Керамический кирпич | 8¸15 | 1,6¸1,9 | 0,9¸3.5 | 15¸50 |
Керамич. фасадная плита | 1¸5 | 1,9¸2,2 | 4¸6 | 35¸50 |
Клинкерный кирпич | < 1 | 2,3¸2,5 | 6¸10 | 50¸100 |
Ячеистый бетон | 40¸60 | 0,5¸1,2 | 0,078¸1 | 15¸75 |
Легкий бетон | – | 0,8¸1,8 | 0,8¸3,2 | 25¸400 |
Тяжелый бетон | 3¸10 | 2,2¸2,5 | 0,8¸3,2 | 50¸500 |
Асбестоцемент | 20¸25 | 1,6¸1,8 | 10¸15 | 50¸100 |
Анализ табл. 4.14 позволяет сделать следующие выводы:
– для любого вида пористых каменных материалов водопоглощение и сопротивление растяжению являются основными факторами, влияющими на их морозостойкость;
– с увеличением водопоглощения и уменьшением сопротивления растяжению морозостойкость материалов уменьшается;
– мера влияния водопоглощения и сопротивления растяжению на морозостойкость зависит от вида материала и особенности его структуры:
· для керамических материалов оба фактора имеют примерно равное значение;
· для тяжелых бетонов главным фактором является водопоглощение;
· для легких бетонов главным фактором является особенность структуры, связанная с наличием резервной пористости заполнителя;
· для ячеистых бетонов – наличие преимущественно крупных (10¸200 мк), не опасных пор;
· для асбестоцементных материалов – высокое сопротивление растяжению и снижение напряжения расширения благодаря увеличению доли пластических деформаций при разрушении.
3ys.ru
Факторы, влияющие на морозостойкость
Анализ механизма при замораживании показывает, что морозостойкость пористых строительных материалов связана в основном с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.
Водопогющение — косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации. Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле:
Кн = W / П,
где: Кн — коэффициент насыщения, ед.;
W - водопоглощение по объему, %;
П — общая пористость материала, %.
Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), и тогда W = П. Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.
Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.
Однако следует заметить, что в условиях замораживания в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, которое меняет характер и механизм разрушения структуры.
Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, которое может быть достигнуто:
- при уменьшении водопоглощения за счет создания микропористой структуры с преимущественно замкнутыми порами;
- путем воздухововлечения, когда в материале образуются воздушные резервуары, гасящие избыточное давление мигрирующей воды;
- посредством введения в структуру материала высокодисперсного армирующего компонента, увеличивающего пластическую составляющую в целом упругой деформации.
Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала, которая не должна превышать 25%, или по потере массы, которая не должна превышать 5%.
Показатель морозостойкости (марка) обозначается символами:
F15; F25; F50.. F500, где цифры показывают количество циклов замораживания и оттаивания материала при испытании.
Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в значительной мере связано со сроками проведения этих испытаний. В табл. 6.2 представлены показатели морозостойкости некоторых строительных ма териалов.
Таблица 6.2. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве
Материал | Водопо-глощение, % | Плотность, г/см3 | Rразр, МПа | Морозостой-кость, циклы |
Керамический кирпич | 8...15 | 1,6...1,9 | 0,9..3,5 | 15...50 |
Кер. фасадная плита | 1..5 | 1,9...2,2 | 4..6 | 35...50 |
Клинкерный кирпич | < 1 | 2,3...2,5 | 6...10 | 50...100 |
Ячеистый бетон | 40...60 | 0,5...1,2 | 0,078... 1 | 15...75 |
Легкий бетон | - | 0,8...1,8 | 25...400 | |
Тяжелый бетон | 3...10 | 2,2...2,5 | 0,8..3,2 | 50...500 |
Асбестоцемент | 20...25 | 1,6...1,8 | 10..15 | 50...100 |
Анализ таблицы позволяет сделать следующие выводы:
- водопоглощение и сопротивление растяжению являются основными факторами, влияющими на морозостойкость любого вида пористых каменных материалов;
- с увеличением водопоглощения и уменьшением сопротивления растяжению морозостойкость материалов уменьшается;
- мера влияния водопоглощения и сопротивления растяжению на морозостойкость зависит от вида материала и особенностей его структуры:
- керамические материалы: оба фактора имеют примерно равное значение;
- тяжелые бетоны: главным является водопоглощение;
- легкие бетоны: главный фактор — особенность структуры, связанная с наличием резервной пористости заполнителя; водопоглощение и сопротивление растяжению, практически, влияния не оказывают;
- ячеистые бетоны: наличие преимущественно крупных (10.. .200 мк), неопасных пор; водопоглощение и сопротивление растяжению второстепенны;
- асбестоцементные материалы: высокое сопротивление растяжению и снижение напряжения расширения благодаря увеличению доли пластических деформаций при разрушении; водопоглощение — второстепенный фактор.
Коррозионная стойкость
Основные понятия, термины, определения
Коррозионная стойкость — способность материала противостоять действию агрессивных сред (коррозии).
Коррозия (от лат. соrrоsiо — разъедание) — разрушение материалов вследствие химического или электрохимического взаимодействия со средой.
Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды, и эрозионного, вызываемого механическим воздействием.
Эрозионное разрушение интенсивно протекает при относительно быстром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.
Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изучении эксплуатационных свойств покрытий полов, дорожных покрытий и пр.
infopedia.su
Факторы, влияющие на морозостойкость | Бесплатные курсовые, рефераты и дипломные работы
Анализ механизма при замораживании показывает, что морозостойкость пористых строительных материалов связана в основном с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.
Водопогющение — косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации. Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле:
Кн = W / П,
где: Кн — коэффициент насыщения, ед.;
W — водопоглощение по объему, %;
П — общая пористость материала, %.
Коэффициент насыщения … может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), и тогда W = П. Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.
Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.
Однако следует заметить, что в условиях замораживания в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, которое меняет характер и механизм разрушения структуры.
Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, которое может быть достигнуто:
— при уменьшении водопоглощения за счет создания микропористой структуры с преимущественно замкнутыми порами;
— путем воздухововлечения, когда в материале образуются воздушные резервуары, гасящие избыточное давление мигрирующей воды;
— посредством введения в структуру материала высокодисперсного армирующего компонента, увеличивающего пластическую составляющую в целом упругой деформации.
Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала, которая не должна превышать 25%, или по потере массы, которая не должна превышать 5%.
Показатель морозостойкости (марка) обозначается символами:
F15; F25; F50.. F500, где цифры показывают количество циклов замораживания и оттаивания материала при испытании.
Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в значительной мере связано со сроками проведения этих испытаний. В табл. 6.2 представлены показатели морозостойкости некоторых строительных ма териалов.
Таблица 6.2. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве
Материал | Водопо-глощение, % | Плотность, г/см3 | Rразр, МПа | Морозостой-кость, циклы |
Керамический кирпич | 8…15 | 1,6…1,9 | 0,9..3,5 | 15…50 |
Кер. фасадная плита | 1..5 | 1,9…2,2 | 4..6 | 35…50 |
Клинкерный кирпич | < 1 | 2,3…2,5 | 6…10 | 50…100 |
Ячеистый бетон | 40…60 | 0,5…1,2 | 0,078… 1 | 15…75 |
Легкий бетон | — | 0,8…1,8 | 0,8..3,2 | 25…400 |
Тяжелый бетон | 3…10 | 2,2…2,5 | 0,8..3,2 | 50…500 |
Асбестоцемент | 20…25 | 1,6…1,8 | 10..15 | 50…100 |
Анализ таблицы позволяет сделать следующие выводы:
— водопоглощение и сопротивление растяжению являются основными факторами, влияющими на морозостойкость любого вида пористых каменных материалов;
— с увеличением водопоглощения и уменьшением сопротивления растяжению морозостойкость материалов уменьшается;
— мера влияния водопоглощения и сопротивления растяжению на морозостойкость зависит от вида материала и особенностей его структуры:
— керамические материалы: оба фактора имеют примерно равное значение;
— тяжелые бетоны: главным является водопоглощение;
— легкие бетоны: главный фактор — особенность структуры, связанная с наличием резервной пористости заполнителя; водопоглощение и сопротивление растяжению, практически, влияния не оказывают;
— ячеистые бетоны: наличие преимущественно крупных (10.. .200 мк), неопасных пор; водопоглощение и сопротивление растяжению второстепенны;
— асбестоцементные материалы: высокое сопротивление растяжению и снижение напряжения расширения благодаря увеличению доли пластических деформаций при разрушении; водопоглощение — второстепенный фактор.
refac.ru
Факторы, влияющие на морозостойкость
Химия Факторы, влияющие на морозостойкость
просмотров - 353
Анализ механизма при замораживании показывает, что морозостойкость пористых строительных материалов связана в основном с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.
Водопогющение — косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации. Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле:
Кн = W / П,
где: Кн — коэффициент насыщения, ед.;
W - водопоглощение по объему, %;
П — общая пористость материала, %.
Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), и тогда W = П. Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.
Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.
При этом следует заметить, что в условиях замораживания в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, ĸᴏᴛᴏᴩᴏᴇ меняет характер и механизм разрушения структуры.
Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, ĸᴏᴛᴏᴩᴏᴇ может быть достигнуто:
- при уменьшении водопоглощения за счет создания микропористой структуры с преимущественно замкнутыми порами;
- путем воздухововлечения, когда в материале образуются воздушные резервуары, гасящие избыточное давление мигрирующей воды;
- посредством введения в структуру материала высокодисперсного армирующего компонента͵ увеличивающего пластическую составляющую в целом упругой деформации.
Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала, которая не должна превышать 25%, или по потере массы, которая не должна превышать 5%.
Показатель морозостойкости (марка) обозначается символами:
F15; F25; F50.. F500, где цифры показывают количество циклов замораживания и оттаивания материала при испытании.
Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в значительной мере связано со сроками проведения этих испытаний. В табл. 6.2 представлены показатели морозостойкости некоторых строительных ма териалов.
Таблица 6.2. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве
Материал | Водопо-глощение, % | Плотность, г/см3 | Rразр, МПа | Морозостой-кость, циклы |
Керамический кирпич | 8...15 | 1,6...1,9 | 0,9..3,5 | 15...50 |
Кер. фасадная плита | 1..5 | 1,9...2,2 | 4..6 | 35...50 |
Клинкерный кирпич | < 1 | 2,3...2,5 | 6...10 | 50...100 |
Ячеистый бетон | 40...60 | 0,5...1,2 | 0,078... 1 | 15...75 |
Легкий бетон | - | 0,8...1,8 | 0,8..3,2 | 25...400 |
Тяжелый бетон | 3...10 | 2,2...2,5 | 0,8..3,2 | 50...500 |
Асбестоцемент | 20...25 | 1,6...1,8 | 10..15 | 50...100 |
Анализ таблицы позволяет сделать следующие выводы:
- водопоглощение и сопротивление растяжению являются основными факторами, влияющими на морозостойкость любого вида пористых каменных материалов;
- с увеличением водопоглощения и уменьшением сопротивления растяжению морозостойкость материалов уменьшается;
- мера влияния водопоглощения и сопротивления растяжению на морозостойкость зависит от вида материала и особенностей его структуры:
- керамические материалы: оба фактора имеют примерно равное значение;
- тяжелые бетоны: главным является водопоглощение;
- легкие бетоны: главный фактор — особенность структуры, связанная с наличием резервной пористости заполнителя; водопоглощение и сопротивление растяжению, практически, влияния не оказывают;
- ячеистые бетоны: наличие преимущественно крупных (10.. .200 мк), неопасных пор; водопоглощение и сопротивление растяжению второстепенны;
- асбестоцементные материалы: высокое сопротивление растяжению и снижение напряжения расширения благодаря увеличению доли пластических деформаций при разрушении; водопоглощение — второстепенный фактор.
oplib.ru
Влияние структуры пор на морозостойкость кирпича -
Строительный кирпич, как и подавляющее большинство других строительных материалов, имеет пористое строение количества и характера пор в материале зависят его физико-технические характеристики, в том числе морозостойкость.
Известно, что вода при переходе в лед увеличивается в объеме на 9%. Развивающееся при этом в материале давление, как установлено рядом исследований в зависимости от характера пор достигает 2 800 кг/см2. В системе капилляров, где возникающий лед может вытеснить избыточную влагу в свободные от не поры, такие большие напряжения исключаются. Если же свободных от воды объемов мало, то в капиллярах возможно давление, превышающее предел прочности материала и приводящее к его разрушению при замораживании.
Кирпич или другое подпетое изделие будет устойчивым к действию мороза только в том случае, когда строение его капилляров либо соглем исключает снижение температуры замерзания (объясняют действием твердой поверхности, переводящей свободную воду в связанное состояние. Степень переохлаждения тем больше, чем меньше диаметр капилляра. В исследованиях П. П. Будникова и Г. С. Блоха снижение температуры замерзания воды объясняется возникновением в капиллярах при льдообразовании давления, значительно превышающего атмосферное.
Крупные поры при погружении кирпича в воду быстро и нацело заполняются водой. Однако при извлечении кирпича вода вытекает из наиболее крупных пор вследствие малых капиллярных сил, а в менее крупных удерживается лишь частично. Такие поры, создающие свободный объем, в который может вытесняться вода из пор, где образуется лед, следует рассматривать как резервные. Они оказывают наиболее благоприятное влияние на морозостойкость материала.
Поры меньшего размера, чем резервные, успевают заполниться водой в процессе водонасьпцения и прочно удерживают ее при извлечении образца из воды. Вода в них замерзает при температуре испытания (—15—20°). Эти поры являются для кирпича опасными.
Таким образом, все поры, имеющиеся в кирпиче, по их влиянию на морозостойкость могут быть подразделены на: опасные, которые вода заполняет, удерживается в них и замерзает:
безопасные, которые вода не заполняет, а также те, которые вода заполняет, но не замерзает в них;
резервные, которые вода при насыщении заполняет, но не удерживается в них.
Разумеется, что эрозостойкость материала зависит от того, сколько в нем содержится тех или иных пор, иначе говоря, от соотношения объемов пор различных размеров.
В общем виде требование к структуре морозостойкого кирпича может быть сформулировано так: объем резервных пор должен быть достаточным, чтобы, компенсировать прирост объема замерзающей воды в опасных порах.
Методика определения объемов пор но их размерам, использованная в дайной работе, основана на вдавливании ртути в поры под разным давлением. Схема прибора, предназначенного для определении размеров пор в интервале диаметров 800—15 тк, показана па рис. 1. Основной частью поромера малых давлений является стеклянный дилатометр, состоящий из горизонтального капилляра 1 и головки 2.
Порядок проведения опыта следующий. Высушенные до постоянного веса образцы 4 закладывают в головку дилатометра и закрывают ее шлиф-пробкой 3. После этого из системы с помощью вакуумнасоса откачивают воздух при открытых кранах 5 н 6. По достижении вакуума, характеризуемого остаточным давлением около 10-2 мм рт. ст. и контролируемого манометром Мак-Леода,
Таким образом, морозостойкость пористых тел зависит от пористо-капилинной структуры, точнее от количественного соотношения пор, свободных от воды а целиком насыщенных водой, в / которых при отрицательных температуры образуется лед. Объем свободных- пир, которые в дальнейшем будем называть резервными, должен быть достаточным. чтобы компенсировать прирост объема замерзающей воды.
Это положение легло в основу проведенных авторами работ по повышению морозостойкости кирпича. В результате этих работ были предложены мероприятия, вполне оправдавшие себя. Вместе с тем некоторые вопросы оставались невыясненными. В частности, не была ясна причина неморозостойкостн кирпича с механической прочностью, что имеет место, и неожиданно хорошие показатели морозостойкости у кирпича. Не было найдено объяснения пониженной устойчивости к действию мороза кирпича полусухого прессования по сравнению с изделиями пластического формования.
Для решения этих вопросов возникла необходимость количественно охарактеризовать структуру пор н выяснить ее влияние на морозостойкость изделий.
В зависимости от размеров пор, возникновение в них льда при замерзании воды происходит при различных температурах. Заполнение мелких пор холодной водой идет медленно. Поэтому при погружении кирпича в воду на 48 час., как это обычно делают при испытаниях на морозостойкость, водопоглощение его редко превышает 90% от водопоглощения в кипящей воде, а чаще всего не достигает этой цифры. Чем меньше коэффициент насыщения (отношение водопоглощения в холодной воде к водопоглощению в кипящей воде), тем больше объем мелких пор, которые не заполнишь водой. Если допустить, что в эти г Дные поры может вытесняться нз- чная вода из смежных пор в них воды, то кирпич с мснь- П1М коэффициентом насыщения всегда может быть более морозостоек. Между К как показали работы ряда, такая зависимость не всегда выполняется. Это явилось причиной исключения из ГОСТа допускавшейся оценки морозостойкости продукции по коэффициенту насыщения (коэффициент морозостойкости).
Изложенное даст основание считать это мелкие поры, незаполняемые при насыщении кирпича водой, нельзя рассматривать как резервные. Вместе с тем, такие поры, поскольку они не содержат воды, можно относить к категории безопасных.
В кирпиче имеются и такие поры, которые хотя и заполняются водой, но также являются безопасными потому, что температура замерзания воды в них лежит значительно ниже нуля. Если ориентироваться на температуры, принятые при стандартных испытаниях кирпича на морозостойкость, то к таким безопасным порам надо отнести те, в которых вода замерзает при температуре ниже —15—20°.
Далее, при работающем вакуумнасосе через кран 5 при закрытом кране припускают воздух и в этой части системы, отключенной от собственно поромера (дилатометра), устанавливается заданное давление, контролируемое чашечным манометром. После этого при открытии крана Б в дилатометр сообщают то же давление.
Ртуть, заполняющая капилляр дилатометра, уходя в поры образца, изменяет свое положение сдвигом столба вправо (в сторону головки). Это фиксируется оптическим прибором. Зная сечение капилляра, определяют объем ушедшей в поры ртути. Благодаря положению капилляра давление ртути во время опыта остается неизменным.
Последовательное увеличение давления в паромере, вплоть до атмосферного, сопровождается соответствующими отсчетами изменения положения ртути. Порядок исследований аналогичен изложенному:
а) постоянства сечения капилляра на всем оно протяжении;
б) постоянства температуры опыта,
в) точности отсчета приложенного давления,
г) точности отсчета изменения положении ртути в капилляре.
Поры размером 0,02—10 мк исследовании на поромере высокого давлении, который используется главным образом в сорбционной технике. Воспроизводимость результатов на нем определено ошибкой опыта в 2%. Количественное соотношение объемов резервные п опасных пор, которое мы называем структурной характеристикой материала. определяется исходя из распределения объемов пор по их размерам опасных и резервных пор устанавливаются по количеству льда, которое образуется в насыщенном водою образце при его замораживании. Количество льда определяем методом температурного скачка.
В основе этого метода лежит зависимость между скоростью изменения при таянии льда и его массой. Определения производят следующим обралом Навеску кирпича насыщают водой при кипячении после чего ее опускают в стеклянный дилатометр, имеющнй форму колбы и заполненный тулуолом лат см дилатометр с тулуолом и образцом помещают в морозильный известных количеств воды (рис. 3), находят массу образовавшегося льда. В данном случае масса льда оказалась равной 5 г.
Объектом изучения в данной работе были обыкновенный глиняный кирпич— массовая продукция заводов, расположенных в разных районах страны. Исследовался также силикатный кирпич некоторых заводов.
Границы резервных и опасных пор были определены путем сопоставления результатов прямых испытаний на морозостойкость со структурными кривыми и величиной льдообразования Установлено, что поры диаметром более 200 мк являются резервными. Поры, менее 200 лис, — опасны. Их нижняя граница несколько изменяется в зависимости от вида кирпича и степени обжига. Так, опасными порами для глиняного кирпича являются поры в интервале от 200 до 1—0,1 лис. При этом для кирпича полусухого прессования нижняя граница в подавляющем большинстве случаев составляет 0,1—0,2 лис, а у кирпичей пластического формования она близка к 1 мк. У силикатного кирпича вследствие особенностей его структуры нижняя граница опасных пор смещается в сторону наиболее мелких и измеряется сотыми долями микрона.
Рассмотрим несколько интегральных кривых На рис 4 показаны кривые для кирпича плоского и пластического формования.
Подвергнутый исследованию кирпич пластического формования — морозостоек, он выдержал 15 циклов попеременного замораживания оттаивания без следов разрушения. Кирпич полусухого формования разрушился при втором цикле. Характер кривых различен. Кирпич пластического формования (морозостойкий) имеет большое количество крупных резервных пор. Границы опасных пор в нем определяются порами диаметром 0,7 мк (вертикальная пунктирная линия на кривой).
Для нахождения границ опасных пор. т. е. пор, в которых замерзает вода, было произведено определение массы льда, образовавшегося в насыщенных водою образцах различных видов кирпича Масса замерзшей воды численно равна объему опасных пор. Зная этот объем, мы откладываем его на интегральней кривой правее 200 мк. При этом на кривой получаем точку, абсцисса которой дает нижнюю границу опасных пор
Найденная величина соотношения у морозостойкого материала согласуется с теоретическими примерами.
При анализе влияния меха прочности на морозостойкость было установлено, что связи между этими нет. Она наблюдается резкого различия:
Кирпич полусухого прессовании имеет значительно меньшее количество крупных пор, а интервал опасных пор простирается у него до 1 мк.
На рис. 5 показаны интегральные структурные кривые кирпича пластического формования различной степени большое количество резервных пор, граница опасных пор лежит в области 0,7 мк. Неморозостойкий недожженный кирпич имеет меньшее количество резервных пор, а интервал опасных пор -ограничивается диаметром 0,2 ж/cJ С помощью интегральных кривых можно оценивать количественное соотношение резервных и опасных пор, которое является структурной характеристикой материала.
alyos.ru
Основные факторы, влияющие на морозостойкость
Анализ накопленных данных позволяет выделить следующие факторы, влияющие на морозостойкость керамических изделий: химический, минеральный и гранулометрический составы глинистого сырья; технологические параметры обжига; характер внутренней и внешней газовой среды. Во многом эти факторы взаимосвязаны.
Известно, что на морозостойкость керамических изделий существенно влияет капиллярно-пористая структура, причем ее влияние сопоставимо с влиянием прочностных свойств изделий и даже сильнее. Однако в настоящее время однозначно не установлено, какой должна быть оптимальная структура, обеспечивающая высокую морозостойкость стеновых материалов.
Исследования влияния характера пористости на морозостойкость керамических изделий выявили, что при значительном содержании пор с радиусом 0,1…200,0 мкм (по другому источнику 0,1…10,0 мкм) морозостойкость снижается, а поры, имеющие радиус до 0,1 мкм, не оказывают на нее существенного влияния.
Установлено, что наиболее устойчивы при эксплуатации в натурных условиях крупнопористые изделия в сравнении с мелкопористыми.
Если данные об оптимальном радиусе пор противоречивы, то практически во всех работах, посвященных взаимосвязи структуры и морозостойкости керамических изделий, отмечается положительное влияние на морозостойкость однородности структуры материала. Поэтому любое изменение параметров технологического процесса, повышающее гомогенность смесей и сырца, способствует получению более морозостойкой продукции.
Получение морозостойких стеновых керамических материалов обусловлено видом сырья и технологическими параметрами производства. Авторы отмечают, что основными технологическими приемами повышения морозостойкости являются: применение менее дисперсных глин; отощениеи гомогенизация шихты; формование сырца без текстурных дефектов и предупреждение трещин во время сушки и обжига; реализация восстановительно-окислительного обжига.
В работе рекомендуется корректирование глиняных шихт органическими поверхностно-активными добавками с целью измельчения и гомогенизации структуры материала. По мнению авторов, на повышение морозостойкости кирпича, содержащего добавки ПАВ, оказывает влияние образование «полузамкнутых» пор, не заполняемых при обычном водопоглощении, и замедление процессов миграции влаги в замерзающем кирпиче.
silikaty.ru
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОИЗВОДСТВЕННЫХ ФАКТОРОВ НА МОРОЗОСТОЙКОСТЬ СТРОИТЕЛЬНЫХ РАСТВОРОВ
Доклады о будущих и современных технологиях
Б. С. Морозов, М. Д. Громова
Научный руководитель - В. Б. Доброхотов, канд. хим. наук, доцент Ярославский государственный технический университет
Морозостойкость - это способность строительного материала сохранять прочность и работоспособность при действии попеременного замораживания и оттаивания в насыщенном водой состоянии. В условиях нашего климата данному свойству следует уделять особое внимание. Морозостойкость зависит от структуры строительного раствора, процесс разрушения которого происходит в двух направлениях:
1) Вода заполняет поры и при замерзании образуется лед, увеличивающийся в объеме на 9%, тем самым создавая давление на стенки пор, что приводит к их разрушению.
2) Напряжения, приводящие к деструкции, возникают при перемещении воды из замораживаемых областей в незамораживаемые, в то время как структура сопротивляется этому перемещению.
Одной из целей работы являлось сравнение методов определения морозостойкости строительных растворов с разным цементно-песчаным соотношением. Исследования проводили двумя способами: классическим (попеременное замораживание/оттаивание образцов в насыщенном водой состоянии) и ускоренным - дилатометрическим, который заключается в однократном замораживании водонасыщенных образцов в керосине при температуре -20 оС и сравнении аномальных скачков объемных деформаций исследуемых и стандартных систем.
Другой важной задачей работы стало изучение влияние на морозостойкость строительных растворов различных производственных факторов. Для этого производилось предварительное замачивание песка, предназначенного для приготовления растворной смеси. Влажность песка составляла 10 масс.%, а продолжительность обработки от 30 минут до 24 часов. Кроме этого исследовано также влияние на морозостойкость растворов температурно-влажностной обработки песка. Для имитации воздействий на песок в производственных условиях в зимний период времени он подвергался выдержке при температуре 60 °С в условиях насыщенного водяного пара. Исследования морозостойкости выполнялись дилатометрическим методом после 28 суток твердения образцов в нормальных условиях.
Установлено, что рассматриваемые производственные факторы могут существенно влиять на морозостойкость получаемых строительных растворов.
Технологии «Умный дом».
Технология «Умный дом» создавалась с одной целью – экономия времени, которое тратится на домашнюю рутинную работу. Новые технологии, применяемые в системе умного дома, поражают своим многообразием. С помощью, так называемой …
ОСОБЕННОСТИ АНАЛИЗА И ОСНОВНЫЕ НАПРАВЛЕНИЯ ПО УКРЕПЛЕНИЮ ФИНАНСОВОГО СОСТОЯНИЯ ХИМИЧЕСКИХ ПРЕДПРИЯТИЙ Ю. А. Ратова
Научный руководитель - А. А. Киселев, канд. пед. наук, профессор Ярославский государственный технический университет Развитие рыночных отношений требует осуществления новой финансовой политики, роста эффективности производства на каждом конкретном предприятии химической …
ПРОТИВОДЕЙСТВИЯ НОВОВВЕДЕНИЯМ В ОРГАНИЗАЦИИ
К. Е. Разумова Научный руководитель - С. Н. Буликов, д-р экон. наук, доцент Ярославский государственный технический университет Актуальность изменений и нововведений обусловлена необходимостью адаптации организации к требованиям внешней и внутренней …
msd.com.ua