Определение прочности стройматериала на сжатие. Прочность на сжатие
1. Определение предела прочности на сжатие
Прочность ─свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или другими факторами (стесненной усадкой, неравномерным нагреванием и т.д.).Прочность материала оценивают пределом прочности (временным сопротивлением), определенным при данном виде деформации. Для хрупких материалов (природных каменных материалов, бетонов, строительных растворов, кирпича и др.) основной прочностной характеристикой является предел прочности на сжатие.
Предел прочности на осевое сжатие [МПа (кгс/см2)] равен частному от деления разрушающей силы[H(кгс)] на первоначальную площадь поперечного сеченияF[мм2(см2)] образца (куба, цилиндра, призмы):
. (1.19)
Для определения прочности на сжатие образцы материала подвергают действию сжимающих усилий и доводят до разрушения. Испытуемые образцы должны иметь правильную геометрическую форму (куб, параллелепипед, цилиндр). Образцы из бетона в форме кубов могут быть следующих размеров: 707070, 100100100, 150150150, 200200200, 300300300мм.
Для испытания образцов материала на сжатие применяют гидравлические прессы и универсальные испытательные машины. Перед испытанием образец взвешивают и обмеряют. Затем его устанавливают на нижнюю опорную плиту пресса точно по ее центру, а верхнюю опорную плиту с помощью винта опускают на образец. Убедившись в правильности установки образца, включают насос пресса и прикладывают к образцу нагрузку, регулируя скорость ее нарастания (обычно в секунду 0,5-1МПа (5-10 кгс/см2). Вмомент разрушения образца, т.е. в момент наибольшей нагрузки, стрелка, связанная с силоизмерительным устройством пресса, остановится и начнет двигаться обратно. Разрушающую нагрузку фиксируют с помощью второй регистрирующей стрелки, которая, будучи отклонена по шкале вместе с первой стрелкой, после ее возвращения в исходное положение остается на месте и показывает значение максимальной нагрузки на образец.
Предел прочности на сжатие образца вычисляют по формуле (1.19),причем в эту формулу, как указано в соответствующих ГОСТах на испытание различных строительных материалов, обычно вводят различные коэффициенты, в т.ч. масштабный коэффициент перехода к прочности образцов базового размера, коэффициент, учитывающий влажность образца, и другие. Например, при испытании тяжелого бетона базовым образцом является куб размерами 150х150х150мм, для которого масштабный коэффициент равен 1.При длине ребра куба 70, 100, 200и 300мм предел прочности рассчитывают, пользуясь соответственно масштабными коэффициентами 0,85; 0,95; 1,05 и 1,10.
Иногда для определения усилий, действующих на испытываемый образец, на прессе устанавливают манометр, показывающий давление в цилиндре (кгс/см2). Тогда, зная площадь поршня и давление на 1см2его поверхности и умножив величину давления на величину площади поршня, можно определить усилие, действующее на образец и разрушающее его.
Зная площадь Fобразца, на которую действует разрушающая нагрузка, по формуле (1.19)можно вычислить предел прочности на сжатие (в кгс/см2или МПа).
Результаты опытов заносят в табл.1.9.
Таблица 1.9. Результаты определения предела прочности на сжатие образца материала
Наимено-вание матери-ала | Размеры образца, см | Площадь попереч-ного сечения образца F, см2 | Разруша-ющая нагрузка Рразр, кН | Предел прочности на сжатие , МПа | Масштаб-ный коэф-фициент | Предел прочности на сжатие базового образца, МПа |
studfiles.net
Прочность при сжатии — Материалы и свойства
Прочность при сжатии – важное механическое свойство. Характеризуется пределом прочности породы при сжатии в сухом состоянии. Действующий стандарт на блоки подразделяет породы по Этому показателю на три класса: прочные (свыше 80 МПа), средней прочности (40—80 МПа), и низкопрочные (5—40 МПа).
Рис. 16. Схема гидравлического пресса для испытаний образцов на сжатие
Стандарт на камни бортовые (ГОСТ 6666—81) допускает изготовление этой продукции из горных пород с пределом прочности при сжатии не ниже, МПа: для изверженных пород – 90, метаморфических и осадочных – 60. Стандарт на камни брусчатые (ГОСТ 23668—79) допускает изготовление их из изверженных пород с пределом прочности не ниже 100 МПа. Стеновые камни из горных пород (ГОСТ 4001 – 84) в зависимости от предела прочности при сжатии подразделяются на 14 марок (от 4 до 400).
1 – станина; 2 – гидроцилиндр; 3 – поршень, 4 – нижняя плита; 5 – испытываемый образец камня; в – верхняя плита; 7 – установочный винт; 8 – манометры; 9 – насос
Определение предела прочности горных пород при сжатии производят на пяти образцах кубической формы с ребром 40—50 мм или цилиндрах диаметром и высотой 40 – 50 мм. Каждый образец перед испытанием очищают щеткой от рыхлых частиц, пыли и высушивают до постоянной массы. Затем тщательно обрабатывают на шлифовальном станке грани образцов, к которым будет приложена нагрузка, для обеспечения их параллельности. После этого образцы измеряют штангенциркулем, устанавливают в центре опорной плиты пресса (рис. 16), имеющей разметку для центровки образцов, и прижимают верхней плитой пресса, которая должна плотно прилегать по всей поверхности верхней грани образцов.
Нагрузку на образец при испытании увеличивают непрерывно и постоянно со скоростью, обеспечивающей его разрушение через 20—60 с после начала испытаний. Величина разрушающей нагрузки должна составлять не менее 10 % от предельно развиваемого прессом усилия. Момент разрушения образца устанавливают по началу обратного движения указательной стрелки силоизмерителя при работающем нагружающем устройстве.
Предельную (разрушающую) нагрузку определяют по положению -фиксирующей стрелки пресса. Если она отсутствует, надо внимательно следить за указательной стрелкой. За предельную нагрузку принимают наибольшее число делений, достигнутое движущейся стрелкой. При испытаниях образцов низкопрочных пород разрушение более продолжительно и нередко наблюдается плавный сброс нагрузки; в этом случае за предельную нагрузку принимают наибольшее число делений по шкале, которое было достигнуто указательной стрелкой.
Для вычисления предела прочности при сжатии определяют разрушающее усилие непосредственно по силоизмерителю или по тарировочным таблицам, прилагаемым прессу. При использовании манометров разрушающее усилие может быть определено как произведение площади поршня пресса на максимальное давление масла в прессе в момент разрушения образца (по показанию манометра).
Предел прочности образца при сжатии Rсж, МПа, вычисляют с точностью до I МПа по формуле
Rсж = P(10*F),
где P – разрушающее усилие пресса, Н; F – площадь поперечного сечения образца, м2.
Предел прочности породы при сжатии вычисляют как среднее арифметическое результатов испытаний пяти образцов. Значения этого показателя для большинства видов облицовочного камня, используемого в строительстве, даны в приложении.
Кроме предела прочности горных пород при сжатии в сухом состоянии, в процессе проведения испытания обычно определяют также и значение этого показателя у пород в водонасыщенном состоянии, что необходимо для оценки размягчения породы. Эти испытания проводятся аналогично вышеописанным (испытания сухих образцов) с той лишь разницей, что перед раздавливанием на прессе образцы выдерживаются в сосуде с водой комнатной температуры в течение 48 ч.
arxipedia.ru
Прочность на сжатие - это... Что такое Прочность на сжатие?
Прочность на сжатие – буквенное обозначение прочности при испытании кубических образцов – fс. сube для цилиндрических – fc. cyl, в соответствии со стандартом EN 12390-3. Вид образцов для испытаний должен быть согласован между заказчиком и изготовителем до начала строительных работ. Другие методы оценки прочносттакже должны быть согласованы заранее. В особых случаях при необходимости прочность бетона может определяться в возрасте ранее, чем 28 дней.
[EN 206-1]
Рубрика термина: Теория и расчет конструкций
Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование
Источник: Энциклопедия терминов, определений и пояснений строительных материалов
Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.
Прочность на сжатие - это... Что такое Прочность на сжатие?
11. Прочность на сжатие определяется различными методами.
К методам неразрушающего контроля относятся:
- Механические методы (пластической деформации - молотки Кашкарова, Физделя; склерометрическим методом - в соответствии с ГОСТ 22690-88 с использованием молотков Шмидта, производимых фирмой РROCEQ или ОМШ-1, работа которых основана на принципе упругого отскока; скалыванием ребра конструкции и отрывом со скалыванием приборами ГПНС-4, ГПНВ-5 по ГОСТ 22690-88, приборами - измеритель прочности ИПС-МГ4, ИПС-МГ4+ фирмы СКБ Стройприбор, ОНИКС-2.4 НПП Карат.
Склерометрические и ультразвуковые измерения позволяют определить поверхностную твердость бетона и получить данные по прочности бетона по корреляционным зависимостям «прочность бетона - скорость ультразвуковой волны - величина упругого отскока».
- Ультразвуковые методы, реализуемые с помощью серийных приборов типа УКБ, УК-14П, УК-10ПМС и ТIСО фирмы РROCEQ (Швейцария).
Массовые измерения скорости продольных волн следует проводить с использованием малогабаритных переносных приборов УК-14П и ТIСО с цифровым видом индикации. Ультразвуковые измерения позволяют: выполнить измерение прочностных и упругих характеристик бетона, оценку однородности бетона, выявить степень и глубину ослабления его поверхностных слоев.
Ультразвуковые измерения необходимо проводить совместно со склерометрическими испытаниями по сплошной сетке с шагом, соответствующим детальности контроля (обычно по сетке 0,5 - 2 м).
Исследования бетона по выбуренным из конструкций кернам осуществляются на стационарных гидравлических прессах.
Выбуривание производится при помощи установок алмазного кернового бурения, например, типа DD-100 или DD-250 фирмы HILTI. Прессовые испытания образцов бетона проводятся на гидравлических прессах по ГОСТ 28570-90 с учетом ГОСТ 18105-86. По результатам прямых испытаний бетона устанавливается его фактическая прочность и определяется средний поправочный коэффициент для построения тарировочных зависимостей.
normative_reference_dictionary.academic.ru
предел прочности на сжатие строительных материалов
На каком бы этапе строительства не находилось здание, его основная конструкция постоянно подвергается физико-механическим и технологическим воздействиям. Таким образом, от инженера, составляющего проект, требуется уверенное знание свойств того или иного стройматериала.
Ондулин — тоже композитный материал
Согласитесь сами, ведь перед тем как, например вы собираетесь готовить борщ, сначала приходиться рассчитать, сколько будет вариться мясо, сколько картошка, сколько капуста. А, уже исходи из знаний, мы засекаем время и поочередно закидываем компоненты супа.
Также и при строительстве здания определяется: каков будет фундамент, из чего будут возведены стены, из чего крыша. Необходимо четко и ясно выбрать материал, из которого будет воссоздана надежная и долговечная конструкция.
Свойства строительных материалов
По сути, стройматериалы можно разделить на две основные категории: природного происхождения и искусственного. К первым можно отнести такие продукты как:
- Кирпич;
- Песок;
- Бетон;
- Дерево.
Классификация вторых значительно разнообразнее, так как сюда входят теплоизоляционные, гидроизоляционные, минеральные, полимерные, акустические и другие изделия. Проще говоря, искусственно созданные стройматериалы, в зависимости от нужды, приобретают наибольшую прочность, упругость, либо теплопроводность.
Ориентируясь на то, какое строится сооружение, мы подбираем соответствующий материал и начинаем строить. Для различной окружающей среды, необходимо подобрать свой определенный, обладающий защитными свойствами, строительный материал. Не отходя от темы, приведем пример: из простой тонкой фанеры или только из гипсокартона, строить дом не имеет никакого смысла. Для возведения прочного, надежного, противостоящего неблагоприятным климатическим условиям здания, инженерам-строителям необходимо учитывать еще одну очень важную особенность стройматериалов это:
- Физические свойства;
- Механические свойства;
- Химические свойства и др.
Попробуем кратко определить каждые из вышеперечисленных видов свойств. Химические свойства это нечто иное как: способность стройматериала к сопротивлению химическим воздействиям окружающей среды. Например, очень часто при использовании того или иного стройматериала, учитывается то как он переносит коррозию, или же насколько противостоит гниению, или же способность выдерживать воздействие влажности. Физические свойства материала это его плотность, пористость, теплопроводность.
Что касается механических свойств, то тут мы отметим: упругость, пластичность, жёсткость, твёрдость, прочность, пределы прочности при сжатии, сдвиге, изгибе. Ну и последняя категория — технологические свойства: теплоустойчивость, скорость затвердевания и высыхания, плавление. Так как механические свойства стройматериалов наиболее важны при строительстве зданий, то соответственно их мы и рассмотрим поближе.
Механические свойства строительных материалов
Упругость материала – это свойство самопроизвольного восстановления первоначальной формы твердого тела после прекращения воздействия внешней нагрузки. Проще говоря: сколько не дави пальцем на резину, она все равно приобретает свой прежний вид, однако стоит зажать её тисками, на поверхности появляются вмятины, которые в зависимости от состава резины, могут даже остаться навсегда. Таким образом, если упругая деформация полностью исчезает после снятия внешнего давления (давление пальцем), то она называется обратимой, если же не исчезает (давление тисками) – необратимой.
Прочность материала
Вата для утепления стен
Прочность – это свойство материалов воспринимать те, или иные воздействия, не разрушаясь. Еще раз объясним «по-русски»: ударив стеклом по бетонной стене — сломается стекло, ударив кувалдой по стене — в стене образуется дырка. Естественно, нетрудно определить у какого же из этих материалов прочности больше.
Однако существует множество «подводных камней» при расчете прочности у изделий. У опытных инженеров под рукой всегда находится таблица прочности строительных материалов, но порою приходится оценивать прочность изделия по его пределу прочности. В физике различают три вида предела прочности:
- Предел прочности при сжатии;
- Предел прочности при изгибе;
- Предел прочности при растяжении.
Рассмотрим поближе первый и второй варианты. Предел прочности на сжатие строительных материалов колеблется в районе от 0,5 до 1000 МПа. Взять, к примеру, гранит: передел прочности при сжатии этого стройматериала равен 120…250 МПа, а для бетона этот показатель равен 80 МПа. Стоит отметить, что для хрупких стройматериалов, таких как кирпич, бетон, зачастую основным показателем является – предел прочности при сжатии. Что касается металла и стали – то их предел прочности при сжатии, такой же как и при растяжении и изгибе.
Предел прочности на изгиб материала характеризуется пределом прочности породы при изгибе в сухом состоянии. Данная характеристика материала определяется по требованию пользователя и считается не обязательной мерой испытания. Однако если вы все же решили провести расчет прочности строительных материалов на изгиб формулы, то важно знать, что исследование проводится на самих образцах стройматериалов при помощи специальных машин.
Твердость материала
Не помешает также узнать о еще одном механическом свойстве материалов это – твердость. Твердость – это свойство материалов сопротивляться проникновению в него другого, более плотного материала. Не учитывать это свойство будет считаться одной из грубейших ошибок, так как по твердости можно определить другие механические свойства изделия.
На практике показатель твердости используют для оценки прочности бетона неразрушающими ударными методами. Также оно играет большую роль при выборе материалов для покрытия дорог и полов.
Истираемость материала
Истираемость определяется характеристикой свойства строительного материала уменьшаться в объеме и в массе, под действием истирающих усилий. В основном на показатель истираемости испытывают материалы, применяемые для устройства лестничных ступеней, полов и тротуаров.
После того как мы ознакомились с некоторыми механическими свойствами стройматериалов, хотелось бы определиться и разобраться в вопросе: «Для чего это нам необходимо знать?» Детальное изучение механических свойств того или иного стройматериала позволяют разобраться в самой природе этого продукта. Определение свойств продукта в дальнейшем поможет вам узнать его внутреннюю структуру, что в свою очередь облегчит вам использование этого стройматериала на практике.
Теперь перейдем к таким стройматериалам, которые содержат в себе большое количество компонентов, а также поближе ознакомимся с их свойствами.
Композитные материалы
Как можно точно дать определение композитным материалам, чтобы простой обыватель смог сразу представить их?
Композитное покрытие стены
Композитный материал состоит из нескольких компонентов. Один из них выполняет роль основы, его называют матрицей, а второй является наполнителем, который обладает высокими показателями прочности и жесткости.
Самый простой пример, который пришел к нам из далекого прошлого – это саманный кирпич. Скорее всего, это самый первый композитный материал, который человечество изобрело для увеличения эксплуатационных характеристик данного строительного материала.
Разновидности композитного материала
Разделить композитные материалы можно на несколько категорий, где все будет зависеть от способа использования наполнителя:
- Волокнистые, к которым относится все тот же саманный кирпич;
- Слоистые материалы, к примеру, бронированное стекло или склеенная фанера;
- Дисперсноупрочненные материалы, здесь можно отметить различные виды стали, в которые добавлены упрочнители;
- И новейшие разработки, к которым относятся нанокомпозиты.
В настоящее время композитные материалы повсеместно и широко используются в сфере строительства. И здесь главную роль играют их высокие показатели.
Во-первых, такой материал намного прочнее, чем каждый из компонентов в отдельности, которые входят в состав композитного материала.
Композитные материалы
Во-вторых, он легче и надежнее. Часто проектировщики заменяют традиционные строительные материалы на композитные, тем самым облегчая конструкцию дома или его части. Но при этом оставляя прекрасные технические и эксплуатационные качества самой конструкции.
Приведем несколько примеров использования композитных материалов при строительстве загородного дома.
Одним из самых популярных композитных материалов, используемых при строительстве, является композитная доска.
Среди строителей она носит название «жидкое дерево». В состав такой доски входят древесная мука, процентное содержание которой зависит от компании-производителя и находится в диапазоне 60%-80%, и полипропилена. Этот вид композитного материала считается самым современным. Размеры такой доски стандартные для всех производителей, она имеет полую структуру, обе стороны доски имеют одинаковый рисунок, который повторяет оттенки и текстуру самых распространенных пород дерева.
Обычно композитные доски используют при облицовке различных площадок, расположенных на территории загородного дома. Это могут быть
- Дорожки;
- Террасы;
- Площадки возле бассейнов, кстати, композитная доска не скользит, даже если на ее поверхность попала вода;
- Беседки;
- Пирсы.
Одним из важных свойств этого композитного материала является то, что под воздействием прямых солнечных лучей, перепада температур и влажности он не изменяется как, к примеру, пластик или древесина.
Компании-производители гарантируют, что срок эксплуатации композитной доски будет от 10 до 50 лет. Кстати, этот композитный материал не требует специального ухода, чистить его можно любыми моющими средствами.
Все больше композитных материалов стало использоваться при отделочных работах. Особенно строители часто используют при установке пластиковых окон подоконники, откосы, отливы и козырьки, выполненные из композитных материалов.
К примеру, пластиковые изделия, выполненные из вспененного полиуретана, который заключен между двумя слоями пластика. Этот вид материала достаточно прочен, не боится изменений погодных условий и прекрасно смотрится. Сегодня откосы из композитного материала используются не только как элемент дизайна интерьера помещения, но и как хороший теплоизолятор.
Как создаются композитные материалы
Как уже говорилось, композитные материалы состоят из двух или более компонентов, процесс производства, или же более точное определение, формирования заключается в том, что армирующее вещество и сама матрица объединяются, а после этому изделию придается форма.
Современные технологии отмечают несколько методов формирования материалов. Первый из них это – вакуумный. Так как «скрещение» двух компонентов происходит при абсолютном вакууме, то данный метод позволяет полностью контролировать давление и температуру воздуха. Следующий метод формирования это инжекция в закрытую форму. При этом процессе связующий компонент, поступает в закрытую форму, содержащую второй армирующий элемент в сухом виде. Таким образом, использование данного метода прекрасно подходит в том случае, когда необходимо воссоздать точно выдержанную форму и размер.
Использование композитных материалов
Очень часто композитные материалы используются в тех случаях, когда необходимы легкие и в то же время прочные материалы. И не смотря на высокую стоимость данной продукции, очень часто композитные материалы используют при строительстве авиационных и космических корпусов, а также при изготовлении автомобильных кузовов.
Что касается отделки помещений, то вы наверняка встречались с такими материалами как: ламинат, ондулин или стеклопластик. Все они как раз таки занимают популярное место в списке композитных материалов.
yegorka.com
Определение прочности стройматериала на сжатие — Материалы и свойства
Под крепостью понимается способность материала сопротивляться разрушению от механических усилий.
Предел прочности — максимальное напряжение, соответствующее нагрузке, вызывающей разрушение образца.
Строительное изделие может подвергаться напряжениям: на сжатие, растяжение, изгиб и т. д.
Предел прочности образцов определяют на гидравлических прессах, разрывных машинах в лабораторных условиях.
Прочность на сжатие определяют по формуле:
Где р — разрушающая нагрузка, Н;
S — площадь поперечного сечения образца, мм 2 .
Образцы, которые исследуются, должны иметь правильную геометрическую форму (рис. 1).
Рисунок 1. Образцы для исследования материалов:I — На сжатие; II — на изгиб; III — на растяжение;
а) плотный природный камень; б) пористый природный камень; в) бетон; г) кирпич; д) цементный раствор; е) кирпич; ж) древесина; з) сталь; и) пластмасса.
Образцы натурального камня: кубической формы – от [1] х 5 х 5 до 10 х 10 х 10 см; цилиндрической формы диаметром и высотой от 5 до 10 см.
Кубическими по форме изготавливаются бетонные образцы размерами 10 х 10 х 10, 15 х 15 х 15, 20 х 20 х 20, 30 х 30 х 30 см.
Для определения предела прочности на сжатие образцы подвергают воздействию стискних внешних сил и доводят до разрушения.
Для исследования используют гидравлический пресс (рис. 2).
Рисунок 2. Общий вид гидравлического прессаОбразцы зачищают мягкой щеточкой, замеряют с точностью до 1 мм, взвешивают и устанавливают на нижнюю опорную плиту пресса точно по ее центру.
Верхнюю опорную плиту опускают на образец с помощью винта и плотно закрепляют его между двумя опорными плитами. Приводят в действие насос пресса и дают вроде нагрузки, следя за скоростью его роста (0,5-1 МПа за 1 с).
В момент разрушения образца стрелка остановится и пойдет в обратном направлении. Этот момент фиксируют. Так надо сделать не менее трех раз, то есть испытать три образца. Среднее арифметическое даст конечный результат испытания.
arxipedia.ru
ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ - это... Что такое ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ?
ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ (временное сопротивление сжатию) величина напряжения, вызывающая разрушение образца при одноосном сжатии. П. п. н. с. определяется по формулегде Р — нагрузка, при которой происходит разрушение образца испытуемой породы, в к?; Г — площадь первоначального поперечного сечения образца в см2.
Словарь по гидрогеологии и инженерной геологии. — М.: Гостоптехиздат. Составитель: А. А. Маккавеев, редактор О. К. Ланге. 1961.
- ВРЕМЕННОЕ СОПРОТИВЛЕНИЕ СЖАТИЮ
- ПРЕДЕЛ ТЕКУЧЕСТИ
Смотреть что такое "ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ" в других словарях:
ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ — см. Временное сопротивление горной породы на сжатие … Словарь по гидрогеологии и инженерной геологии
Предел прочности на одноосное сжатие — отношение вертикальной нагрузки на образец грунта, при которой происходит его разрушение, к площади поперечного сечения образца. Источник: ГОСТ 30416 96: Грунты. Лабораторные испытания. Общие положения оригинал документа … Словарь-справочник терминов нормативно-технической документации
Предел прочности картона при сжатии — характеристика механической прочности картона при нагрузке силой на сжатие до необратимой деформации или до разрушения … Реклама и полиграфия
Предел прочности — Предел прочности механическое напряжение , выше которого происходит разрушение материала. Согласно ГОСТу 1497 84 более корректным термином является «Временное сопротивление разрушению», то есть напряжение, соответствующее наибольшему усилию … Википедия
предел прочности при сжатии — 3.1.10 предел прочности при сжатии : Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению; Источник … Словарь-справочник терминов нормативно-технической документации
предел прочности — Tensile Strength (TS) Предел прочности Механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента… … Толковый англо-русский словарь по нанотехнологии. - М.
предел прочности грунта на одноосное сжатие — 3.2.15 предел прочности грунта на одноосное сжатие: Отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения (ГОСТ 26447 85). Источник: ОДМ 218.1.004 2011: Классификация стабилизаторов грунтов в … Словарь-справочник терминов нормативно-технической документации
ПРЕДЕЛ ПРОЧНОСТИ — [СОПРОТИВЛЕНИЕ ВРЕМЕННОЕ] условное нормальное напряжение, равное отношению максимальной нагрузки, предшествующей разрушению к начальной площади сечения (Болгарский язык; Български) граница на якост (Чешский язык; Čeština) mez pevnosti (Немецкий… … Строительный словарь
предел прочности грунта на одноосное сжатие — отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения. (Смотри: ГОСТ 25100 95. Грунты. Классификация.) Источник: Дом: Строительная терминология , М.: Бук пресс, 2006 … Строительный словарь
Предел выносливости — Предел выносливости (также предел усталости) в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость, то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале … Википедия
gidrogeology.academic.ru