Что такое саморасширяющийся цемент. Цемент полимерный
Добавки в цемент - виды цементных добавок и их особенности
Добавки в цемент используются для регулирования основных строительно-технических свойств и придания специальных качеств бетонe и цементному раствору. Изменяя состав материала с помощью добавок, можно: улучшить пластичность и удобоукладываемость, увеличить плотность, повысить влагонепроницаемость, ускорить или замедлить схватывание, уменьшить усадку и т.д.
СодержаниеСвернуть
- Разновидности добавок для цемента
- Заключение
Разновидности добавок для цемента
Добавки в цемент классифицируются в соответствии с нормативным документом – ГОСТ 24640-91. «Добавки для цементов». При этом каждый отдельный вид присадки используется для изменения или улучшения определенных свойств строительного материала.
ГОСТ 24640-91 идентифицирует следующие виды добавок:
- Пластифицирующие. Вводя в бетон или раствор материал этого вида можно значительно увеличить удобоукладываемость и пластичность бетонов без внесения дополнительных порций заверителя (максимально оптимизировать «водоцементное» соотношение). Кроме того пластификаторы увеличивают прочность и морозостойкость конструкций, а также позволяют сэкономить до 15% цемента. Популярные пластифицирующие добавки к цементу: Полипаст СП-1 (С-3), «Лигнопан Б-2», «Форт УП-4», а также широко известные в нашем быту – жидкое мыло, моющее средство «Фейри».
- Вовлекатели воздуха. Добавлением в бетонный раствор воздухововлекающих присадок достигается пористость структуры бетонов, что в свою очередь увеличивает морозостойкость сооружения. Противоморозный эффект достигается следующим образом – воздушные поры дают возможность замерзающей воде расширяться в пространство пор, а не в толщу бетона. Так как передозировка данной присадки ведет к значительному снижению прочности конструкции, применять вовлекатель воздуха следует строго по прилагаемой инструкции. Виды воздухововлекающих присадок используемых строителями России: «Micro Air 125», «Микропор 1», «ТЕХНОНИКОЛЬ Aero С», «Аэро 200».
- Ускорители схватывания смеси. Применяются в двух случаях – при бетонных работах в условиях пониженной температуры воздуха и для компенсации вредного влияния других присадок, тормозящих схватывание. Применение ускорителей твердения позволяет проводить послойную заливку и уменьшает время заливки. Популярные ускорители твердения: «Реламикс М2», «Энерджи Адмикс», «Хард Пласт», «Бисил ФС».
- Замедлители схватывания. Используются бетонными заводами и строителями для увеличения временного интервала «живучести» готового бетона или раствора. Строительный материал с добавлением замедлителей схватывания можно транспортировать на большие расстояния, а также производить поэтапную заливку в соответствии с некоторыми видами строительных технологий. Популярные марки замедлителей схватывания: «Линамикс П-120», «Поташ», «Бисил Ретардер», винная кислота, «Неолас-П(1)».
- Уплотняющие добавки. Это эффективные добавки в цемент для гидроизоляции бетонных сооружений эксплуатирующийся в условиях повышенной влажности: резервуаров для хранения воды, тоннелей метрополитенов, фундаментов, погребов, подвалов и гидротехнических конструкций. Кроме того уплотнители увеличивают прочность и коэффициент водонепроницаемости сооружений. Популярные добавки в цемент для водонепроницаемости и уплотнения бетонных растворов: «Д-5», «SIKAPAVER AE-1», «Микрокремнезем МК – 85», «Кальматрон».
- Ингибиторы коррозии. Применяются для эффективной защиты стальной арматуры от корродирования и последующего разрушения. Технический смысл действия присадки заключается в образовании на поверхности арматурных стержней защитной оксидной пленки. Марки ингибиторов коррозии: «MasterProtect 8000 Cl», «Sika® FerroGard®-901», нитрат кальция.
- Противоморозные добавки. В соответствии с названием позволяют вести бетонные работы в зимний период, при температуре окружающего воздуха до 15-20 градусов Цельсия. Суть действия противоморозной добавки заключается в ускорении вывода затворителя из толщи материала. Популярные противоморозные добавки: «АрмМикс НОРДПЛАСТ М», формиат натрия, «Ультралит», «Фриз», «Ирбис-ПрМ».
- Полимерные добавки. Цемент с полимерными добавками используется для приготовления бетонов повышенной: плотности, водонепроницаемости и морозостойкости и прочности «на изгиб». Механизм действия полимерных присадок заключается в образовании на поверхности частичек компонентов (цемента, щебня и песка) тонкой полимерной пленки, которая в свою очередь способствует прочному «склеиванию» частичек в монолитный конгломерат. В числе применяемых полимерных добавок: смола ДЭГ-1 и ТЭГ-1, полиаминная смола С-89, «Mowilith Pulver», Метилцеллюлоза водорастворимая, «Tylose».
- Красящие добавки в цемент. В соответствии со своим названием применяются при изготовлении цветных бетонных растворов используемых при производстве: декоративных конструкций, тротуарной плитки, скульптурных композиций, ваз, кашпо и пр. Марки: «Углерод технический П-803», «Двуокись титана DuPont R-706», «КЖО-50», «FEPREN Y-710», «BROWN 686».
Заключение
Непрофессиональные застройщики часто задаются вопросом: какой лучше цемент с добавками или без? Ответом на этот вопрос будет наличие или отсутствие специальных требований к изготавливаемой конструкции или технологии заливки.
При этом цемент и бетон с добавками априори будет стоить значительно дороже, чем цемент и бетон без добавок. Как уже было сказано, каждый тип добавки выполняет конкретную функцию (увеличивает прочность или водонепроницаемость, регулирует подвижность смеси, повышает устойчивость е низким температурам и т.п.).
Поэтому если к конструкции и технологии строительства не предъявляются специальные требования, приобретать цемент с добавками экономически невыгодно и бессмысленно.
cementim.ru
Поликарбоксилатный цемент | Терапевтическая стоматология
ПОЛИКАРБОКСИЛАТНЫЙ ЦЕМЕНТ
Поликарбоксилатные цементы (или цинк-полиакрилатные цементы) применяются в виде порошка и жидкости (рис. 3).
Порошок цемента состоит в основном из специально обработанной (термохимически) окиси цинка с добавлением окиси магния для снижения реактивности окиси цинка. Кроме того, порошки могут содержать алюминий. В некоторых экспериментальных цементах в порошок для увеличения прочности вводят в качестве наполнителя порошкообразную нержавеющую сталь.
Жидкость цемента —это водный раствор полиакриловой кислоты. Большинство выпускаемых цементов содержит 32—42% концентрацию полиакриловой кислоты с молекулярной массой 25 000—50 000. В процессе производства вязкость жидкости цемента контролируют, измеряя молекулярную массу полимера, a pH регулируют, добавляя гидроокись натрия.
Затвердевший цемент—аморфная цинк-полиакрилатная гель-матрица, содержащая частицы непрореагировавшей окиси цинка.
Основным преимуществам поликарбоксилатного цемента является его способность химически связываться с эмалью и дентином. Это происходит за счет хелатного соединения карбоксилатных групп полимерной молекулы кислоты с кальцием твердых тканей зуба (рис. 4).
Адгезия к эмали колеблется в пределах 35—130 кгс/см2, но оптимальная связь достигается на хорошо очищенной зубной поверхности. Представляет несомненный интерес устойчивость этой связи при выдержке образцов во влажных условиях в течение довольно длительного времени.
Результаты клинических исследований, однако, не позволяют сделать вывод о лучшей фиксации коронок и мостовидных протезов при использовании поликарбоксилатных цементов по сравнению с цинк-фосфатными цементами.
Прочность при сжатии образцов поликарбоксилатного цемента в консистенции для фиксации через 24 ч примерно вдвое меньше, чем образцов цинк-фосфатного цемента. Однако прочность при растяжении поли-карбоксилатного цемента примерно на 40% выше прочности цинк-фосфатных цементов. Толщина пленки поликарбоксилатных цементов несколько выше, чем цинк-фосфатных цементов, но клинически это различие не сказывается. Растворимость поликарбоксилатных цементов в воде через 24 ч составляет 0,05% т. е. она меньше чем цинк-фосфатных цементов (0,2%).
Существенным преимуществом поликарбоксилатного цемента являются его положительные биологические свойства. Токсикологические испытания показали полную безвредность материала. В эксперименте на зубах собак нами установлено, что новый цемент оказывает менее выраженное действие на пульпу и периодонт, чем обычно применяемые цинк-фосфатные цементы; реакция мягких тканей при подкожной имплантации образцов у крыс протекает по типу обычного асептического воспаления. Причиной такого различия биологических свойств сравниваемых цементов является прежде всего более быстрое достижение поликарбоксилатным цементом нейтрального pH. Так, первоначально кислая среда сразу после замешивания цемента, уже через 3—15 мин, достигает 4,8 и 6,0, а у висфата соответственно 3,6 и 4,3.
Кроме того, крупные высокомолекулярные полимерные молекулы полиакриловой кислоты, уже в начальной фазе твердения прочно связанные в цинколиакрилатной сшитой структуре, не могут легко и быстро диффундировать из цемента в дентин и пульпу. Их проникающая способность через дентин значительно снижена. У цинк-фосфатных цементов небольшого размера ионы фосфорной кислоты очень легко проникают в виде водного раствора в дентин и пульпу. Наряду с этим органическая полиакриловая кислота, как известно, значительно более слабая и менее диссоциирующая, чем фосфорная кислота. Этим можно объяснить отсутствие у больных при фиксации с помощью поликарбоксилатного цемента коронок и мостовидных протезов самопроизвольных болей, которые нередко встречаются при использовании цинк-фосфатного цемента.
Перечисленные свойства обусловливают показания к применению поликарбоксилатного цемента: для фиксации коронок, мостовидных протезов, вкладок и штифтов; для прокладок под пломбы из силикатного цемента, амальгамы, галлодента-М и пластмассы; фиксации ортодонтических аппаратов. Ввиду того что цемент обладает минимальными раздражающими свойствами, его можно с успехом применять для пломбирования молочных зубов у детей. В связи с быстрым твердением цемент для пломбирования каналов зуба не используется.
Проведенные нами предварительные клинические испытания позволили уточнить некоторые особенности приготовления и применения нового цемента.
В связи со значительной вязкостью полиакриловой кислоты соотношение порошок — жидкость при смешивании материала в консистенции для фиксации составляет не 3:1, как у цинк-фосфатных цементов, а колеблется от 1:1 до 2: 1.
Во избежание испарения воды дозирование жидкости необходимо производить непосредственно перед смешиванием. Поверхность, на которой осуществляют смешивание, не должна поглощать влагу, т. е. должна быть стеклянной или в виде специально обработанной бумаги. При температуре ниже 18°С скорость реакции поликарбоксилатного цемента снижается, при температуре выше 26°С этот процесс ускоряется и уменьшается рабочее время.
Процесс смешивания цемента должен осуществляться быстро — не более 20—30 с с момента введения порошка, который добавляют большими порциями. В этом случае рабочее время цемента будет максимальным. При смешивании не требуется значительных растирающих усилий.
Консистенция для фиксации поликарбоксилатного цемента кремоподобная и несколько более густая, чем у цинк-фосфатных цементов. Текучесть поликарбоксилатного цемента увеличивается по мере смешивания или повышения прилагаемого к материалу усилия. Консистенция считается правильной, если цемент вязкий, но стекает обратно со шпателя под собственной тяжестью. В процессе фиксации несъемных протезов и вкладок приготовленная смесь легко формируется в очень тонкую пленку.
В процессе приготовления отечественного поликарбоксилатного цемента в консистенции для фиксации к отмеренной дозе порошка добавляют 3 капли жидкости, а в консистенции для прокладки и пломбирования на ту же дозу порошка берут 2 капли жидкости.
Лучшие результаты достигаются при наложении материала на чистую и хорошо высушенную поверхность твердых тканей зуба. Цементную массу можно использовать только до тех пор, пока поверхность ее остается блестящей. Если поверхность становится тусклой, у цемента наблюдается стадия нитей и толщина пленки становится такой большой, что цемент не может применяться для фиксации протезов и вкладок. С целью максимального использования адгезивных свойств цемента применять его следует не позже чем через 1,5—2 мин с момента начала смешивания.
Промышленный выпуск поликарбоксилатного цемента осваивается Харьковским заводом медицинских полимеров и стоматологических материалов.
Полимерные цементы
Полимерные цементы
Полимерными цементами материалы называются потому, что в качестве жидкости используется раствор, содержащий органические кислоты — полимеры. Полимерные цементы отличаются от минеральных тем, что способны химически связываться с тканями зуба. Жидкая фаза их представлена раствором полиакриловой кислоты. Карбоксильные группы полиакриловой кислоты образуют химическую связь с кальцием тканей зуба. В некоторых цементах обезвоженная кислота находится вместе с порошком. В этом случае порошок замешивается на дистиллированной воде.
Поликарбоксилатный цемент (цинкполиакрилатный). Был первым адгезивным материалом, разработанным для использования в стоматологии. Многозвеньевые длинные молекулы полиакриловой кислоты взаимодействуют, с одной стороны, с оксидом цинка, а с другой — с кальцием твердых тканей зуба. Таким образом, между пломбировочным материалом и тканями зуба образуется не ретенционная (механическая) связь, а ионообменная (химическая). Такое соединение способствует образованию между искусственным материалом и зубом весьма плотного контакта, не допускающего микроподтекания.
Поликарбоксилатный цемент имеет более кислую реакцию сразу после замешивания, по сравнению с цинк-фосфатным, но эта кислота быстро нейтрализуется. Более того, крупные молекулы полиакриловой кислоты слабо диссоциированы и не могут проникнуть даже через тонкий слой дентина, поэтому Поликарбоксилатный цемент считается биосовместимым. Поликарбоксилатный цемент используется в качестве прокладочного материала и для цементирования коронок. К сожалению, он растворяется в ротовой жидкости и не обладает высокой прочностью.
Замешивается поликарбоксилатный цемент в пропорциях, определенных производителем, обязательно на невпитывающих поверхностях - стекле или специальной бумаге. Жидкость следует наносить непосредственно перед смешиванием во избежание потери влаги. Консистенция замешанного цемента более сметанообразная, чем у цинк-фосфатного цемента, его масса при этом должна течь со шпателя под действием собственной тяжести. Обычное время замешивания - 30 - 60 с. Рабочее время твердения - 2,5 - 6 мин - может быть увеличено до 15 мин за счет замешивания на охлажденном стекле. Во время работы необходимо обращать внимание на блеск поверхности цемента. При потускнении цемент теряет адгезивные свойства и использовать его уже нельзя. Время первичного отверждения обычно составляет 7 - 9 мин.
Адгезия к тканям зуба невелика и составляет: к эмали - от 2,5 до 13 МРа, к дентину - около 2,1 МРа. Клинические испытания не показали преимуществ в ретенции коронок при использовании поликарбоксилатного цемента по сравнению с цинк-фосфатным.
Поликарбоксилатные цементы: «Poly-F Plus», Dentsply; «Carboxylate Cement», Heraeus Kulzer; «Durelon», Espe; «Carboco», Voco и др.
Стеклоиономерные (полиалкеноатные) цементы. Официальное название стеклоиономерных цементов (СИЦ), согласно классификации ISO — стеклополиалкеноатные цементы, указывает на принципиальный их состав. Порошок СИЦ состоит в основном из кальций-фторалюмо-силикатного стекла: SiO2 - А12О3 - CaF2 - Na3AlFg - А1РО4.
Частички порошка измельчают и просеивают, так что их средний размер составлет 8 - 13 мкм. Размер частиц определяет основные свойства цемента, поэтому производители модифицируют порошок самыми разными способами. Оксид цинка, бариевое стекло, стронций, лантан добавляют для увеличения рентгеноконтрастности. В так называемых «безводных» цементах в порошок вводят кристаллическую полиакриловую кислоту, вступающую в кислотно-основную реакцию только после растворения в воде («BaseLine», «AquaCem», Dentsply; «Aqua lonofil», Voco). Такая комбинация компонентов позволяет увеличивать срок хранения стеклоиномерных цементов, а также достигать во время замешивания очень жидкой консистенции цемента, используемого для цементирования или линейной прокладки.
Стеклоиномерные цементы образованы реакционноспособным кальций-фторалюмосиликатным стеклом и полиакриловой кислотой. Основным их признаком служит кислотно-основная реакция отверждения. В настоящее время выделяют два вида СИЦ: классические и упрочненные.
Классическими называют самоотверждаемые стеклоиномерные цементы, в состав которых входят минеральный реактивный порошок и жидкость на основе полиакриловой кислоты («Fuji I», GC; «Ketac-Cem», Espe; «lonobond», Voco; «Glass-ionomer cement», Heraeus Kulzer).
Упрочненные стеклоиномерные цементы содержат те или иные добавки, увеличивающие прочность. Среди упрочненных цементов различают: полимермодифицированные («Vitrebond», ЗМ; «Vivaglass Liner», Vivadent; «Fuji Lining LC», GC), полимер-содержащие («ChemFlex», Dentsply), металлосодержащие («Argion», Voco) стеклоиномерные цемены и церметы («Ketac-silver», «Chelon-silver», Espe; «Miracle Mix», GC).
Отверждение классических, полимерсодержащих, церметов и металлосодержащих стеклоиномерных цементов происходит обычно за счет кислотно-основной реакции, т. е. все они самоотверждаемые. Полимермодифицированные стеклоиномерные цементы отверждаются в результате протекания кислотно-основной реакции цемента и свободнорадикальной реакции полимера. В отличие от других стеклоиномерных цементов, полимермодифицированные цементы являются материалами двойного и тройного отверждения. С момента появления стеклоиномерных цементов на стоматологическом рынке они стали неотъемлемой частью ежедневной практики, обеспечивая сохранение зубной структуры за счет ее реминерализации и при этом отвечая эстетическим параметрам. Одной из важнейших черт стеклоиномерных цементов является способность химически связываться со структурами зуба благодаря ионообменным процессам, длительно выделять ионы фтора, а также кумулировать эти ионы из внешней среды.
Принципиальные отрицательные качества стеклоиномерных цементов заключаются в невысокой механической прочности, шероховатости поверхности, опаковости, длительности окончательного твердения. В состав порошка полимерсодержащих стеклоиномерных цементов входят частички или волокна отвержденного полимера.
Порошок полимермодифицированного стеклоиномерного цемента кроме компонентов классического цемента содержит полимерные составляющие, обеспечивающие свободнорадикальную реакцию полимеризации. В состав порошка цеметов входят частички стекла, сплавленного с металлами, такими как золото, серебро и др. В порошок металлосодержащих стеклоиномерных цементов добавляются опилки металлов или порошок амальгамы.
Жидкость классических, полимерсодержащих, металлосодержащих стеклоиномерных цементов и церметов, называемая раствором полиакриловой кислоты, состоит из водного раствора кополимера акриловой и итаконовой (или малеиновой) кислот. Использование кополимеров и различных добавок способствует повышению стабильности жидкости. Для контроля реакции отверждения вводят небольшое количество тарта-ровой кислоты. Она активирует диссоциацию ионов из стекла. Полиакриловая кислота не обладает структурной устойчивостью, может загустевать и терять свои свойства. Поэтому некоторые цементы содержат кристаллы сухой полиакриловой кислоты в составе порошка. В так называемых «безводных» цементах в качестве жидкости используется вода или раствор тартаровой кислоты.
Жидкость полимермодифицированных СИЦ содержит 15 - 25 % полимера, обычно ГЭМА (англ. НЕМА, произносится как «хима») - гидроксиэтилме-V такрилат.), а также менее 1 % полимеризуемых групп и фотоинициатора. После начальной световой активации полимера обычная кислотно-основная реакция проходит такие же стадии, как и в классических СИЦ. В зависимости от пропорции смешивания в таком цементе остается от 4,5 до 15 % несвязанной ГЭМА. Так как ГЭМА является гидрофильным веществом, то после затвердевания цемента он может выделяться в окружающие ткани или напитываться водой, что ведет в некоторой степени к деградации структуры. Некоторые производители вводят катализаторы, способствующие прохождению свободнорадикальной реакции, увеличивая степень полимеризации мономера и уменьшая поглощение воды.
Процесс твердения классического, полимерсодержащего и металлсодержащего стеклоиономерных цементов и церметов проходит в три стадии.
Стадия 1. Поверхностный слой стеклянных частиц атакуется поликислотой с образованием диффузной адгезии между стеклом и матрицей. Около 20 - 30 % стекла растворяется, и различные ионы (включая ионы кальция, фтора, алюминия) выделяются, формируя цементную соль.
Стадия 2. В течение этой стадии ионы кальция и алюминия связываются с полианионами через карбоксильные группы. Начальное твердение под действием ионов кальция занимает 4 - 10 мин. Дальнейшее созревание происходит в течение 24 ч за счет менее мобильных ионов алюминия. Ионы фтора и фосфат-ионы образуют нерастворимые соли и комплексы. При участии ионов натрия на поверхности частиц стекла образуется ортокремниевая кислота, переходящая в кремниевый гель, который способствует связыванию порошка с матрицей.
Стадия 3. Является стадией созревания. Во время нее происходит прогрессивная гидратация солей матрицы, приводящая к резкому усилению физических свойств.
В результате прохождения этих стадий поверхность стеклянных частиц растворяется с высвобождением ионов кальция и алюминия, которые затем вступают во взаимодействие с полиакриловой кислотой, формируя кальциевые и алюминиевые полиакрилатные цепи. Кальциевые - формируются первыми, обеспечивая первичное отверждение, но они неустойчивы и подвержены гидратации. Алюминиевые - формируются позже и, будучи нерастворимыми, обеспечивают физические, прочностные свойства пломбы. Протекающая в этом случае кислотно-основная реакция ведет к диффузной адгезии частиц стекла к матрице. Полиакрилатные цепи создают пористое пространство, которое позволяет гидроксид-ионам и ионам фтора мигрировать. Эти три стадии отверждения относятся к длительным реакциям, которые продолжаются, как минимум, 1 мес, а возможно и дольше.
Процесс отверждения полимермодифицированных стеклоиномерных цементов обеспечивается протеканием двух реакций: кислотно-основной реакции нейтрализации и свободнорадикальной полимеризации акрилатов.
Полимеризация акрилатов может инициироваться при смешивании компонентов (химическая активация), а также при разложении инициатора фотополимеризации под действием света (световая активация). Таким образом, полимермодифицированные стеклоиномерные цементы могут быть самоотверждаемыми (двойного отверждения) и тройного отверждения (фото- и химическая инициация отверждения полимера и кислотно-основная реакция). После замешивания и укладки пломбы экспозиция света вызывает быстрое отверждение материала на глубину проникновения света. В этом участке происходит полимеризация ГЭМА и метакрилатных мономеров, после чего цемент считается клинически затвердевшим. Однако полные физические свойства достигаются через несколько дней по завершении кислотно-основной реакции, которая происходит аналогично стеклоиномерным цементам химического отверждения, хотя и в меньшей степени.
Соотношение жидкости и порошка меняет физические свойства стеклоиномерных цементов. Чем больше порошка - тем прочнее цемент, но при этом весь порошок должен быть увлажнен жидкостью.
Затвердевший стеклоиномерный цемент содержит частицы непрореагировавшего стекла, окруженные кремниевым гидрогелем и внедренные в полисолевую матрицу поперечно связанной полиакриловой кислоты. Эта структура рассматривается как пористая, способная свободно пропускать ионы малого размера, такие как гидроксидные и ионы фтора. Структура содержит как связанную, так и свободную воду. На ранних стадиях затвердевания избыток воды может поглощаться кальциевыми полиакрилатными цепями. Однако их вымывание водой приводит к нарушению структуры цемента. При пересыхании цемента на этом этапе несвязанная вода испаряется, что также обусловливает нарушение структуры стеклоиномерных цементов.
В полимермодифицированных стеклоиномерных цементах на ранних этапах затвердевания миграция влаги блокируется, но дальнейшее развитие кислотно-основной реакции и созревание цемента не прекращаются.
Стеклоиномерные цементы выпускают для ручного замешивания в виде системы порошок - жидкость или для автосмешивания в специальных капсулах при помощи прибора амальгаматора.
В капсулированных стеклоиномерных цементах пропорция устанавливается производителем и не зависит от врача. Важно тщательно изучить инструкцию, чтобы четко знать, для какой цели предназначен цемент, какое время замешивания, какое рабочее время и время отверждения. Вносить материал в полость зуба после замешивания нужно достаточно быстро. Потеря эластичности или блеска цементной массы служат признаками непригодности для использования.
При ручном замешивании необходимо строгое соотношение порошка и жидкости, определенное производителем. Внимание должно быть уделено как возможности поглощения воды, так и ее потери. При замешивании цемента главной задачей является не растворение порошка в жидкости, что достигается при перетирании, а смачивание частичек порошка жидкостью, так как физические свойства цемента будут зависеть от количества нерастворенного стекла. После первичного затвердевания поверхность пломбы из классического стеклоиномерного цемента рекомендуется защитить полимерным лаком или адгезивной системой для предотвращения впитывания влаги.
Обработка реставраций из стеклоиномерных цементов должна проводиться на следующий день и под обильным водяным орошением. Полимермодифицированные стеклоиномерные цементы можно обрабатывать сразу после первичной полимеризации, но открытые поверхности лучше затем покрыть изолирующим веществом.
Одно из важнейших свойств стеклоиномерных цементов заключается в их способности к химической адгезии к минерализованным тканям. Механизмы такой адгезии основаны на процессах диффузии и адсорбции. Адгезия инициируется при контакте полиакриловой кислоты цемента с твердыми тканями зуба. Фосфатные ионы из гидроксиапатита замещаются на карбоксильные группы полиакриловой кислоты, при этом каждый фосфатный ион захватывает ион кальция для поддержания нейтральности. Таким образом, на границе зуба и пломбировочного материала образуется ионообменная химическая связь за счет кальций-фосфатполиакриловой кристаллической структуры. При достижении такой связи невозможно нарушить адгезивное соединение тканей зуба и цемента. Однако если реставрация все-таки отделяется от зуба, значит, произошел когезивный отрыв в среде одного из них. Поскольку прочность на разрыв у СИЦ невысока, то ионообменный слой чаще остается прикрепленным к зубу.
Адгезия к органическим компонентам дентина может происходить также за счет водородной связи или образования металлических ионных мостиков между карбоксильными группами поликислоты и коллагеном дентина. СИЦ обладают очень хорошей биосовместимостью. Доказано, что зубной налет на поверхности стеклоиономера не формируется, а это значит, что окружающие мягкие ткани не подвергаются воспалению. Наиболее патогенный микроорганизм Streptococcus mutans не может развиваться в присутствии ионов фтора.
Реакция пульпы на стеклоиномерный цемент обычно благоприятная. Свежезамешанный цемент имеет очень низкое значение рН 0,9 - 1,6, но уже в течение первого часа этот показатель становится почти нейтральным. Более того, дентин является очень хорошим буфером, и даже тонкий его слой хорошо защищает пульпу. Некоторые авторы отмечают незначительную воспалительную реакцию, которая полностью исчезает в течение 10 - 20 дней. Поэтому прокладка под стеклоиномерный цемент не требуется, исключение может быть сделано при локализации в проекции пульпы, над которой менее 1 мм дентина. При цементировании коронок для предотвращения повышенной чувствительности не рекомендуется обрабатывать витальные зубы кислотой, пусть даже и органической. Обработка зубов под коронки сама по себе травматичная манипуляция, особенно если учесть, что такие зубы зачастую уже имеют пломбы, т. е. налицо хроническое воспаление пульпы. Напротив, отпрепарированные зубы рекомендуется обработать минеральным составом или покрыть их лаком или адгезивным агентом перед снятием слепка.
Образец стеклоиономерного цемента в процессе отверждения дает усадку около 3 %, если соблюдены правила замешивания и сохранен водный баланс. На практике, учитывая длительность реакции отверждения, а также развитие адгезии к стенкам полости посредством образования ионообменной связи, усадка практически нивелируется.
Медленно твердеющие цементы типа 2.1 (реставрационный эстетический), если они не защищены от внешней влаги, впитывают воду, что уменьшает усадку, но и способствует ослаблению его физических характеристик.
Полимермодифицированные стеклоиномерные цементы содержат небольшое количество полимера, поэтому усадка на начальном этапе затвердевания ничтожно мала. Усадка вследствие последующей кислотно-основной реакции развивается очень медленно и контролируется процессами адгезии. В отличие от них, светоотверждаемые композиты демонстрируют немедленную усадку, которая способствует развитию «стресса» на границе пломбировочный материал - зуб.
Большинство стеклоиномерых цементов являются более рентеноконтрастными, чем дентин и эмаль, однако некоторые эстетические материалы типа 2.1 (реставрационный эстетический) не обладают таким свойством вообще. Это вызвано требованиями прозрачности, так как введение рентгеноконтрастных веществ уменьшает прозрачность стеклоиномерного цемента.
Выделение ионов фтора также служит важнейшей характеристикой стеклоиономерных цементов. Эта способность проявляется не только в первые дни после постановки пломбы, но и в течение всего срока ее существования. Большое их количество выделяется в первые несколько дней, затем выделение значительно уменьшается и стабилизируется к 2 - 3 мес существования реставрации. Дальнейшее долговременное выделение фтора достаточно для защиты от кариеса окружающих твердых тканей зубов. Исследования доказывают выделение ионов фтора на протяжении, как минимум, 8 лет.
Вначале фтор выделяется с поверхности стеклянных частичек, после чего он фиксируется в кремниевом гидрогеле и, не являясь его структурной частью, может свободно перемещаться. Степень его диффузии зависит от концентрации фтора в ротовой жидкости. При пониженной концентрации происходит его выделение. Повышение концентрации ионов фтора за пределами пломбы может приводить к их поглощению структурой цемента. Таким образом, стекло-иономерные материалы могут рассматриваться в качестве резервуара ионов фтора.
Стеклоиономерные цементы обладают рядом неоспоримых преимуществ перед остальными материалами, однако не являются универсальными пломбировочными материалами. Все современные пломбировочные материалы имеют ограничения, но если использовать их по показаниям, они позволяют достигать наилучшего результата. Уже около 30 лет стеклоиномерные цементы используются в практике, демонстрируя прекрасные качества, описанные выше.
Ионообменная химическая связь с тканями зуба является уникальным свойством этих материалов, особенно учитывая проблему микрощелей, существующую для всех пломбировочных материалов. Стеклоиномерные цементы также являются резервуаром и источником ионов фтора в течение всего существования реставрации, способствуя реминерализации и укреплению тканей зуба. Для практического врача не менее важна также простота использования этих материалов в работе и их относительно невысокая стоимость.
>
Источник: stomfak.ru
- Рак слизистой оболочки полости рта
- Жидкость в больших количествах может вызвать отечность
- Эндемическое значение воды
- Онкологические заболевания опаснее для мужчин
- Анафранил (Anafranil)
- Домашние отбеливание зубов
- Расстройства приема пищи (анорексия, булимия)
- Зубная щётка останется в прошлом
qstoma.ru
Гидроизоляция пола своими руками: руководство по проведению работ
На одном из этапов монтажа пола в жилом или производственном помещении необходимо выполнить гидроизоляцию, выбрав для этого наиболее подходящий материал. С помощью цементно-песчаной смеси проводят выравнивание базового пола в помещении. При этом заблаговременно должна быть выполнена гидроизоляция пола перед стяжкой. Качественный гидроизоляционный слой защищает конструкцию пола от разрушающего воздействия влаги. В помещениях с высоким уровнем влажности устройство гидроизоляции пола напрямую влияет на комфорт и безопасность их эксплуатации.
Какая гидроизоляция бывает?
На рынке стройматериалов можно найти различные материалы, позволяющие эффективно защитить пол от попадания влаги. Наибольшее распространение получили обмазочные и оклеечные материалы, с помощью которых гидроизоляция пола своими руками осуществляется быстро и легко.
- Обмазочная гидроизоляция пола изготавливается производителями на основе окисленного битума, в который добавляется органический растворитель и различные наполнители. В качестве добавок может быть использован латекс, пластификатор или резиновая крошка. Благодаря перечисленным добавкам удается повысить эластичность покрытия. Это сказывается на надежности материала и его устойчивости к внешним воздействиям.Битумно-резиновые или битумно-полимерные мастики обладают высокой адгезией, обеспечивающей прочное сцепление гидроизоляционного материала с основанием пола. Если устраивается гидроизоляция пола под стяжку, в основу которой положена армирующая фибра, то повышается прочность и устойчивость к истиранию бетонного основания. Снижается и риск появления в бетоне усадочных трещин.
- Оклеечная гидроизоляция создается на основе битума, который армируется стеклотканью или полиэстером и обогащается модифицированными полимерами. Выпуск данной продукции налажен в рулонах. Удобнее применять самоклеящиеся материалы для гидроизоляции пола, потому что укладка наплавляемых рулонов требует использования специального оборудования в виде газовой горелки.
Рулонная гидроизоляция для пола является очень эффективной, но только при качественном исполнении
Обратите внимание! Мастика для гидроизоляции пола вытесняет рулонные материалы, потому что в отличие от них не имеет неприятного запаха, а также не содержит швов, могущих стать причиной протечки воды. Однако рулонные материалы имеют свою нишу на рынке и привлекают покупателей своей ценовой доступностью. К тому же после фиксирования клеящейся гидроизоляции к основанию можно продолжать работы по укладке пола.
Изготавливаем цемент-полимерную мастику
Знайте, что гидроизоляция пола в душевой может быть выполнена не только из готовых смесей, но и из цемент-полимерной мастики, замешиваемой своими руками. Для ее приготовления берется:
- сухой цемент;
- минеральный наполнитель;
- вода.
Иногда вместо воды применяется специальная связующая эмульсия, а также водная, акриловая, силиконовая или виниловая дисперсия полимеров. Консистенция получаемой смеси напоминает жидкий пластилин.
Чтобы гидроизоляция хорошо легла на базовое основание, необходимо тщательно подготовить его для проведения работ. При этом собирается и выносится мусор. С помощью пылесоса избавляются от строительной пыли. Для обеспечения лучшей адгезии рекомендуется обрабатывать поверхность чернового пола грунтовочными растворами. Обычно производители гидроизоляционных материалов советуют, какими грунтовками лучше всего пользоваться.
Наносят смесь в два слоя, при этом на один квадратный метр площади пола уходит 3 кг цементно-полимерной мастики. Предварительно все стыки проклеивают специальной герметизирующей лентой
Важно! С помощью цементно-полимерных мастик можно выровнять уровень пола в ванной, доведя его до требуемой высоты. Поэтому после применения данного состава заливку стяжки не проводят. Финишное напольное покрытие можно стелить прямо поверх слоя гидроизоляции.
Помните, что после нанесения битумной мастики, жидкой резины или других видов обмазочных материалов, вы должны дать время для полимеризации нанесенного гидроизоляционного слоя. Заливку стяжки или укладку финишного пола начинают после окончания данного процесса.
Оцените статью: Поделитесь с друзьями!pol-master.com
Саморасширяющийся цемент: марки, применение, цены
Расширяющийся цемент относится к группе вяжущих строительных смесей, увеличивающихся в объеме в момент застывания или не имеющих усадки при твердении. Это свойство достигается за счет ввода в состав специализированных добавок и особо тонкого помола клинкера. Как следствие — раствор на его основе обладает линейным расширением и хорошей адгезией, вступает во взаимодействие с рабочей поверхностью и укрепляет конструкции. Этот стройматериал считается относительной новинкой в частном строительстве, из-за более высокой стоимости его рекомендуют использовать строго по определенному назначению, выбрав правильную разновидность.
Оглавление:
- Принцип действия
- Виды
- Основные параметры
- Область использования
- Цены
Чем обусловлен эффект
Обычная усадка портландцемента составляет 2 мм/м конструкции, максимум достигается на 3 неделю затвердевания, именно в этот момент возрастает риск образования трещин. У саморасширяющихся смесей наоборот — наблюдается увеличение объема, пусть и не всегда значительное. То есть у них начальное линейное расширение влажного раствора преобладает или сравнивается с сухой усадкой, для некоторых вариантов даже требуется ограничение в виде железобетонного каркаса. Такой эффект объясняется подбором состава и вводом специализированных примесей: гидросульфоалюмината кальция, природного двуводного гипса, высокоглиноземистых шлаков, негашеной извести. Чем выше доля саморасширяющейся добавки, тем больше будет начальное линейное расширение и скорость схватывания. Но нужно быть внимательным, в некоторых случаях раствор застывает за 4–10 мин.
Разновидности
В зависимости от состава, свойств и типа расширения выделяют следующие группы саморасширяющегося цемента:
- НЦ — напрягающий.
- ВРЦ — водонепроницаемый расширяющийся.
- РПЦ — расширяющийся портландцемент.
- ГГРЦ или ГЦ — гипсоглиноземистый.
Первая группа используется для работы с ЖБИ, в состав входит не менее 70 % портландцемента, 15–20 глиноземистых шлаков и 10 гипса, для затвора берут обычную воду. Этот цемент начинает расширяться через 4 часа и окончательно достигает твердости через 70. Раствор на его основе используют для усиления прочности конструкций как минимум в 2 раза, в частном строительстве такие нагрузки встречаются редко.
Саморасширяющийся водонепроницаемый цемент получают путем смешивания 70 % глиноземов, 10 гидроалюминатов и 20 высокопрочного или обычного гипса. Эти марки используются для гидроизоляционных работ, включая подземное и подводное строительство. В процессе расширения этого цемента образуется плотный искусственный камень, практически непроницаемый для влаги. Линейное расширение достигает 0,3–1 %, причем материал получает свои полезные свойства уже через сутки после заливки.
ГГРЦ также обладает гидроизоляционными свойствами. Его основу составляют высокоглиноземистые шлаки (до 70 %) и природный двуводный гипс. Эти компоненты способствуют не только линейному расширению раствора, но и увеличению морозостойкости, сульфатостойкости, антикоррозийности. Такие смеси, равно как и составы из портландцемента и гипса, требуют особого подхода при замесе и уходе. В частности — некоторым маркам цемента необходимо обеспечить при затвердевании высокую влажность или пропарку, существует ограничение для использования их в качестве финишной отделки. Конкретные условия работы зависят от состава: чем больше компонентов, тем эффективнее и прихотливее строительная смесь.
Свойства и характеристики
Рабочие параметры регламентируются ГОСТ 31108-2003, дополнительные обозначения уточняют содержание согласно европейским стандартам. Цифра в приведенной марке соответствует величине энергии самонапряжения. Так, НЦ-10 относится к безусадочному цементу, а НЦ-60 — к напрягающему с высоким линейным расширением. К основным техническим характеристикам причисляют:
- Сроки начального и окончательного затвердевания, ч.
- Степень расширения, %.
- Предел прочности при сжатии, МПа.
- Рабочая температура и другие условия эксплуатации.
Полезными свойствами саморасширяющегося безусадочного цемента считаются: высокая адгезия, прочность, стойкость к влаге, низким температурам, коррозии и сульфатам. Расширение материала проходит по всему объему, что гарантирует равномерное распределение по заливаемой полости и минимум пустот, после затвердевания раствор взаимодействует с соседними поверхностями.
У некоторых разновидностей нет недостатков, помимо цены, но другие могут частично потерять свои полезные свойства при нарушении условий эксплуатации (например, НЦ при частых температурных нагрузках более 35 °C или при повышенной влажности). Еще одним минусом является распространение поддельных стройматериалов, нужный эффект наблюдается только у сертифицированной продукции.
Сфера применения
В индивидуальном строительстве рекомендуется купить цемент с данными свойствами для решения исключительных задач: склейки железобетонных конструкций, качественного заполнения пустот и трещин, наружной отделки стен из ракушечника или другого пористого материала. Он незаменим при укладке плит-перекрытий между этажами частного дома, когда технология требует создания монолита, что недостижимо в домашних условиях.
Также саморасширяющийся раствор хорошо соединяет отошедшие или растрескавшиеся стены, заменяя необходимость в капитальном ремонте или полной ее перекладке. Отдельной темой является наружная отделка фасадов. Этот стройматериал отлично сохраняет теплоизоляционные свойства пористого ракушечника, пено- и газобетона, и защищает их от воздействия влаги. Его также рекомендуют купить для обустройства бань, душевых и бассейнов, в данном случае он наносится тонким слоем и уберегает обычный бетон от сырости и растрескивания.
Стоимость
Марка | Производитель | Вес упаковки, кг | Цена, рубли |
Расширяющийся гипсоглиноземистый цемент ГЦ-40 | Пашийский МЦЗ, Россия | 50 | 1400 |
ГЦ-50 | 1300 | ||
ГЦ-60 | 1500 | ||
Высокоглиноземистый цемент ВГЦ-I | 200 | ||
Водонепроницаемый безусадочный раствор Quellmörtel extra
| Bostik Hey’Di, Германия | 25 | 2200 |
Глиноземистый цемент Secar-38R | Kerneos, Франция | 800 | |
Напрягающий цемент НЦ-20 | Русеан, Россия | 300 | |
Подольс-цемент, Россия | 20 | 170 | |
НЦ- 10 | 150 |
stroitel-list.ru