Разница между автоклавным и неавтоклавным газобетоном. Автоклавное твердение это
Вяжущее вещество - автоклавное твердение
Вяжущее вещество - автоклавное твердение
Cтраница 1
Вяжущие вещества автоклавного твердения применяют для изготовления разнообразных материалов: пористых ( газосиликат, пеносиликат) - для теплоизоляции элементов наружных стен и покрытий зданий; плотных, - для конструкционных элементов. [1]
Вяжущие вещества автоклавного твердения, достаточно быстро затвердевающие только при повышенных температурах в среде насыщенного водяного пара или перегретой жидкости. [2]
Различают вяжущие вещества автоклавного твердения, которые наиболее эффективно твердеют при автоклавной ( гидротермальной) обработке в течение 6 - 10 ч при давлении насыщенного пара 0 9 - 1 3 МПа ( 9 - 13 атм), а также кислотоупорные вяжущие вещества, которые после затвердевания на воздухе могут продолжительное время сохранять свою прочность при воздействии кислот. [3]
Различают также вяжущие вещества автоклавного твердения, которые наиболее эффективно твердеют при автоклавной ( гидротермальной) обработке в течение 6 - 10 ч при давлении насыщенного пара 0 9 - 1 3 МПа ( 9 - 13 атм), а также кислотоупорные вяжущие вещества, которые после затворения на воздухе могут продолжительное время сохранять свою прочность при воздействии кислот. [4]
В группу вяжущих веществ автоклавного твердения входят известково-кремнеземистые вяжущие, состоящие из извести и кварцевого песка или других кремнеземистых материалов, а также известково-нефелиновое вяжущее, состоящее из извести и нефелинового шлама. К этой же группе относят приведенные выше песчанистые портландцементы и другие вяжущие ( на основе извести и малоактивных шлаков, зол), для которых эффективен гидротермальный режим твердения. [5]
Каждое из вяжущих веществ автоклавного твердения содержит две главные части: кремнеземистый компонент ( SiO2 в кристаллической или аморфной форме) и известь ( СаО), которые называются известково-кремнеземштым вяжущим веществом. Вводимые добавки могут регулировать образование структуры. [6]
В группу вяжущих веществ автоклавного твердения входят известково-кремнеземистые вяжущие, состоящие из извести и кварцевого песка или других кремнеземистых материалов, а также из-вестково-нефелиновые вяжущие, состоящие из извести и нефелинового шлама. К этой же группе относят приведенные выше песчанистое портландцемента и другие вяжущие ( на основе извести и малоактивных шлаков, например отвальных или зол), для которых эффективен гидротермальный режим твердения. [7]
Наряду с этим различают вяжущие вещества автоклавного твердения, эффективно твердеющие только при автоклавной обработке - давлении насыщенного пара 0 8 - 1 2 МПа и температуре 170 - 200 С. В группу вяжущих веществ автоклавного твердения входят: известково-кремнеземистые и известково-не-фелиновые вяжущие, а также смеси тонкомолотого песка с портландцементом, которые хотя и могут твердеть в других условиях, но дают значительно более высокий прирост прочности при автоклавном режиме твердения. [8]
В самостоятельную группу часто выделяют вяжущие вещества автоклавного твердения ( известково-кремнеземистые, известково-нефелино-вые, известково-шлаковые), хотя по существу они относятся к гидравлическим вяжущим. [9]
Помимо этих основных групп, различают также вяжущие вещества автоклавного твердения и кислотоупорные цементы. [10]
Помимо этих основных групп, различают также вяжущие вещества автоклавного твердения и кислотоупорные цементы. [11]
Наряду с этим различают вяжущие вещества автоклавного твердения, эффективно твердеющие только при автоклавной обработке - давлении насыщенного пара 0 8 - 1 2 МПа и температуре 170 - 200 С. В группу вяжущих веществ автоклавного твердения входят: известково-кремнеземистые и известково-не-фелиновые вяжущие, а также смеси тонкомолотого песка с портландцементом, которые хотя и могут твердеть в других условиях, но дают значительно более высокий прирост прочности при автоклавном режиме твердения. [12]
Поэтому, в отличие от воздушных, они могут применяться в наземных, подземных, гидротехнических и других сооружениях, подверженных воздействию водной среды. К таким вяжущим относятся портландцемент, глиноземистый цемент, пуццолановые и шлаковые смешанные цементы, ряд специальных цементов, а также гидравлическая известь. К ним примыкают еще и вяжущие вещества автоклавного твердения. [13]
Страницы: 1
www.ngpedia.ru
Разница между автоклавным и неавтоклавным газобетоном
В настоящее время стремительно растет спрос на строительные блоки, производимые из ячеистых бетонов и часто можно услышать вопрос: «в чем разница между автоклавным и неавтоклавным газобетоном?». В рамках этой статьи будут рассмотрены основные отличия и показатели этих изделий.
Характеристики материала
Для начала необходимо внести ясность в терминологию. Под ячеистыми бетонами понимают все легкие бетоны в процессе изготовления которых в структуре образуются ячейки (поры). В свою очередь, он делится на пенобетон и газобетон, в зависимости от технологии создания пор. Следующая ступень деления возникает в зависимости от процесса твердения – автоклавный или неавтоклавный.
Автоклавирование
При пропаривании смеси необходимой для производства газобетона при давлении выше 12 атмосферных и температуре свыше 190 градусов Цельсия в аппаратах, называемых автоклавами, получают новый материал с характеристиками, которые невозможно получить в нормальных условиях – этот процесс и называется автоклавирование. В результате этого структура бетона меняется на молекулярном уровне и получается новый материал с совершенно уникальными показателями, называемый тоберморит.
Неавтоклавный бетон – это застывший естественным образом или с применением пара, но при нормальном атмосферном давлении раствор с порами, в то время как автоклавный газобетон является искусственно созданным камнем. Они принципиально отличаются по многим показателям. Имеют разный состав и различные физико-технические параметры, которые у газобетона автоклавного твердения на порядок выше.
Основные характеристики материалов:
Качество
Качество автоклавного газобетона всегда, вне всяких сомнений, поскольку его производство — это чрезвычайно сложный и невыполнимый в кустарных условиях технологический процесс. Во время производства нужно одновременно контролировать множество процессов и параметров, для этого на современных заводах степень автоматизации доходит до 95 процентов и практически исключает возможность несоблюдения технологии по вине человека. Изготовление, как правило, происходит на крупных заводах и материал привозят на стройплощадку уже в виде готовых строительных блоков. Технология описана в современном ГОСТе от 2007 года и обязательно должна подтверждаться протоколами испытаний и сертификатами на продукцию. Для изготовления пеноблоков и газобетона, таких мощностей не требуется и на первый взгляд это кажется плюсом. Ведь продукция получается более дешевой. Но сможете ли вы исключить риск некачественного производства или вовсе кустарного изготовления? При покупке автоклавного газобетона, такой вопрос не встанет, ведь вы всегда можете быть уверены в его качестве на 100%.
Однородность
Неавтоклавный газобетон производят при добавлении в бетонную массу газообразователя и перемешивая ее. В результате бывают случаи, при которых пузырьки, обладая меньшим весом, всплывают вверх, а наполнители, наоборот, оседают внизу. В итоге готовая продукция в виде строительных блоков получается неоднородная и даже может обладать различными параметрами. В случае производства автоклавного газобетона все совершенно иначе. Процесс газообразования и твердения происходит одновременно и протекает равномерно по всему объему производимого материала. Как итог поры в готовом материале распределены равномерно и после завершения этапа резки готового материала на строительные блоки, они получаются идеального качества и однородной структуры.
Крепления
Поскольку газобетон получается очень прочным на нем возможно закрепить тяжелые материалы и оборудование. Например, вентилируемые фасады, выполненные не только из легких материалов, но и тяжелые из керамогранита. Для того чтобы крепление было надежным используют анкерные болты с полиамидными распираемыми элементами. В итоге при использовании, например, анкера 10х100 выдерживается нагрузка на вырыв по оси до 700 кг, что очень близко к значениям полнотелого кирпича.
Усадка
При наборе прочности происходит значительная усадка неавтоклавного газобетона в результате которой появляются трещины в готовой кладке, отваливается штукатурка или происходит отслоение отделочного слоя. Все это длится на протяжении 3-5 лет пока материал не достигнет своей прочности. Зачастую стены при использовании таких материалов невозможно только зашпаклевать и покрасить, как правило, требуются более сложные работы. Внутри приходится производить отделку гипсокартонном, а снаружи использовать кирпич или навесные фасады. Такие проблемы не возникают при использовании автоклавного газобетона, поскольку он набирает свою прочность еще в процессе производства. Для сравнения показатель усадки автоклавного газобетона составляет 0,5 мм/м, а вот неавтоклавного от 1 до 3 мм/м.
Точность производства
В процессе производства для неавтоклавных материалов опираются на показатели допустимых значений из старого ГОСТа в результате готовые строительные блоки имеют большое отличие в геометрических характеристиках. Для блоков из газобетона автоклавного твердения таких проблем не существует, поскольку все производство ведется по современному ГОСТу и расхождения в параметрах готовой продукции минимальны. В связи с большой погрешностью в геометрических размерах появляется ряд проблем при использовании неавтоклавного газобетона:
- Увеличивается необходимое количество раствора и как следствие стоимость строительства.
- Образуются мостики холода из-за толстых швов.
- Выравнивание поверхности стен становится достаточно трудоемким процессом.
Теплоизоляция
Уровень теплоизоляции у обоих материалов очень хороший. Но можно рассмотреть этот вопрос со стороны эффективности использования разных материалов и затрат для достижения одинакового эффекта. На уровень теплоизоляции помимо прочих влияет такой показатель, как плотность материала. Чем выше уровень плотности, тем более низкие показатели теплоизоляции будут у строительных блоков. Например, для использования материала в качестве конструктивного, а уж тем более для несущих стен, требуется высокая прочность. Для достижения нужных показателей с использованием неавтоклавного газобетона необходима плотность как минимум 700 кг/м3. Это означает, что для качественной теплоизоляции толщина стены должна быть около 65 см. При тех же условиях, для достижения нужного уровня прочности можно использовать автоклавный газобетон с уровнем плотности 500 кг/м3 и толщина стены будет уже около 40 см.
Итоги
На первый взгляд при строительстве домов кажется очевидным преимуществе в цене не в пользу автоклавного газобетона. Но в итоге с учетом всех недостатков неавтоклавных материалов и суммы необходимой на их устранения и этот плюс сходит на нет. Автоклавный газобетон превосходит неавтоклавный практически по всем параметрам.
Похожие статьи
kamedom.ru
Изделия автоклавного твердения на основе извести. Понятие о технологии производства. Значение автоклавной обработки. Строение, свойства и области применения
При нормальных условиях твердения изделия на основе строительной извести имеют малую прочность. Обработка насыщенным водяным паром при 70...100 oС и атмосферном давлении (пропаривание) или искусственная карбонизация значительно повышают прочность этих изделий. Однако максимальных значений показатели прочности и долговечности этих материалов приобретают в условиях гидротермальной обработки в автоклавах в среде насыщенного водяного пара. Гидротермальную обработку (запаривание) проводят под давлением насыщенного водяного пара: 0,8; 1,2 и 1,6 МПа, что соответствует температурам указанной среды 174,5; 190,7 и 203,3 oС.
Автоклавные строительные материалы выпускают в виде кирпича, блоков и панелей для наружных и внутренних стен, панелей перекрытий, колонн, лестничных маршей и площадок, балок и других изделий. Их свойства близки к свойствам цементных бетонов, но они отличаются меньшим расходом вяжущих, широким использованием дешевых местных заполнителей и, следовательно, меньшей стоимостью. Однако для их производства необходимы автоклавы.
Силикатный кирпич — один из наиболее экономичных и распространенных в стране стеновых материалов, из него возводят более 16% всех каменных зданий.
Основными видами сырья для производства силикатного кирпича являются песок, известь и вода. Кроме того, применяют суглинки, трепелы, золы, шлаки и другие горные породы и промышленные отходы. В качестве известкового компонента для производства автоклавных изделий можно применять молотую негашеную известь, пушонку, частично гашеную известь, а также известково-зольное и известково-пуццолановое вяжущее.
Производство силикатного кирпича включает следующие стадии: добычу и просев песка, обжиг извести и ее размол совместно с частью песка, смешение полученного вяжущего с немолотым песком и водой, гашение извести в смеси с песком, повторное перемешивание и до-увлажнение полученной массы, прессование кирпичей, их укладку на вагонетки, загрузку в автоклав и обработку насыщенным водяным паром при 174,5 oС (давлении 0,8 МПа).
Автоклавная обработка (запаривание) силикатного кирпича производится по следующему режиму: подъем температуры до 174,5 oС — 1,5 ч, изотермическая выдержка при 174,5 oС — 8 ч; снижение температуры до 100 oС (и давления до атмосферного) — 2ч.
Силикатный кирпич подразделяется на марки, которым соответствуют показатели предела прочности при сжатии 30; 25; 20; 15; 12,5; 10 и 7,5 МПа (последняя цифра только для пустотелых камней).
Морозостойкость рядового силикатного кирпича должна составлять не менее 15 циклов попеременного замораживания (при — 13 oС) и оттаивания (в воде при 15...20oС), а лицевого — 25, 35, 50 циклов в зависимости от марки.
Водопоглощение рядового силикатного кирпича не должно превышать 16 %, а лицевого — 14 %. Средняя плотность составляет 1800...1850 кг/м3.
Заводы выпускают рядовой и лицевой силикатный кирпичи, полнотелый и пустотелый, одинарный и модульный (утолщенный). Одинарный силикатный кирпич имеет ту же форму и размеры, что и красный керамический (250x120x65 мм). Модульный силикатный кирпич является пустотелым и имеет размер 250x120x88 мм. Выпускаются также мелкоштучные силикатные изделия в виде пустотелых камней размером 250x120x138 мм. Такие изделия имеют массу не более 4,3 кг. Технология в общих чертах выглядит следующим образом: 90 % кварцевого песка смешивается с 10 % извести с добавлением воды. В течение двух часов происходит реакция гашения извести, результатом которой является образование гидроксида кальция. Сформованные изделия плавно прессуются для равномерного удаления из массы пустот, после чего обрабатываются в автоклаве перегретым паром (170-200ºС) при давлении 8-12 атмосфер. Различные добавки позволяют получать цветной силикатный кирпич, который имеет широкую гамму пастельных тонов. Качество продукции зависит от точности соблюдения технологических процессов; контроль на всех этапах, как правило, автоматизирован. Экономически картина выглядит следующим образом: технологический цикл производства силикатного кирпича занимает 15-18 часов, в то время как для керамического кирпича требуется 5-6 дней, трудозатраты и расход топлива в два раза ниже, а готовая продукция дешевле на 20-35 %.Характеристики силикатного кирпича тоже на первый взгляд впечатляют. Это экологически чистый материал, более плотный чем традиционный кирпич. Он обладает повышенной механической прочностью и отличными звукоизоляционными свойствами — из-за чего производители настойчиво рекомендуют свою продукцию для возведения многоквартирных домов, а также внутренних стен и перегородок в частной застройке. Однако большая плотность увеличивает массу силикатного кирпича примерно на 20 % в сравнении с керамическим.Главным недостатком силикатного кирпича является высокий уровень водопоглощения, в следствие которого снижаются теплоизоляционные характеристики и морозостойкость. Из-за чувствительности к влаге силикатный кирпич категорически противопоказан для строительства фундаментов и цоколей, стен, соприкасающихся с влажными помещениями (без устройства сплошной гидроизоляции). Как следствие, теплоизоляционные характеристики материала (и так оставляющие желать лучшего) на практике становятся непредсказуемыми.
Известково-шлаковый и известково-зольный кирпичи являются разновидностью силикатного кирпича, но отличаются меньшей плотностью и лучшими теплоизоляционными свойствами, так как в них тяжелый кварцевый песок заменен пористым легким шлаком в известково-шлаковом кирпиче или золой в известково-зольном кирпиче.
Для приготовления известково-шлакового кирпича берут 3...12 % извести и 88...Э7 % шлака, а для известково-зольного — 20...25 % извести и 75...80 % золы. Так же как и шлак, зола является дешевым сырьевым материалом, образующимся при сжигании каменного, бурого угля и другого топлива в котельных ТЭЦ, ГРЭС и т. д.
Использование шлаков и зол экономически выгодно, так как при этом расширяется сырьевая база силикатных и других строительных материалов и снижается их стоимость.
Производство известково-шлакового и известково-зольного кирпича аналогично технологической схеме производства силикатного кирпича. Шлаковый и зольный кирпичи выпускают размером 250x120x140 мм и больше, марками по прочности при сжатии М25, 50 и 75, морозостойкостью такой же, как и у силикатного кирпича, плотностью 1400...1600 кг/м3, теплопроводностью 0,5...0,6 Вт/(м * oС).
Применяют известково-шлаковый и известково-зольный кирпичи для возведения кладки стен зданий малой этажности (до трех этажей), а также для кладки стен верхних этажей многоэтажных зданий.
Силикатный бетон представляет собой бесцементный бетон автоклавного твердения. Вяжущим в нем является смесь извести с тонкомолотым песком.
Наибольшее распространение получили мелкозернистые силикатные бетоны, заполнителем в которых является обычный кварцевый песок.
Формуют силикатный бетон вибрированием, прессованием, прокатом, центрифугированием, литьем и т. д. Для крупноразмерных изделий чаще всего применяют вибрационное формование на виброплощадках и виброустановках. Вибрационное воздействие, как правило, характеризуется амплитудой колебаний 0,5...0,8 мм и частотой 2800...3000 кол/мин.
Изготовление силикатобетонных автоклавных изделий характеризуется сравнительно низким расходом извести: 175...250 кг на 1 м3 плотного бетона. Это объясняется тем, что вяжущим в условиях автоклавной обработки является не только известь, но и часть песка (в первую очередь молотого), входящего в состав цементирующих материалов — гидросиликатов кальция.
Крупноразмерные изделия из плотного силикатобетона имеют прочность на сжатие 15...40 МПа, среднюю плотность 1800... 2100 кг/м3 и морозостойкость более 50 циклов попеременного замораживания и оттаивания. Они могут применяться наряду с цементо-бетонными во всех случаях, кроме контакта с грунтовыми и сточными водами, содержащими углекислоту (вследствие образования растворимого бикарбоната кальция).
Основная особенность ячеистого бетона состоит в его пористой структуре. Именно за счет этого ячеистый бетон обладает отличными теплоизоляционными свойствами. А вот пористая структура у газо- и пенобетона получается абсолютно различными способами.
Свои названия пено- и газобетон получили за счет технологии изготовления.
Пенобетонполучают в результате добавки в цементный раствор для изготовления блоков специальных пенообразующих добавок. Они могут быть различного происхождения – органического или синтетического, и служат они для того, чтобы наполнить цементный раствор пузырьками воздуха. Пена тщательно перемешивается с раствором, и пузырьки воздуха равномерно распределяются по всей его массе, создавая при отвердевании замкнутые поры, которые уменьшают плотность бетона, облегчают массу готового изделия и придают ему тепло- и звукоизоляционные свойства.
Газобетон производится иначе. Есть несколько способов газообразования, остановимся на одном из них. Раствор для производства газобетонных блоков состоит из цемента, кварцевого песка, извести, воды и алюминиевой пудры (или пасты). Порообразование происходит за счет реакции между цементом и алюминиевой пудрой, за счет которой выделяется водород. В результате раствор увеличивается в объеме наподобие дрожжевого теста. И вспенивание, и последующее отвердевание раствора происходит по специальной технологии и температурном режиме в автоклавах, в то время как пенобетон отвердевает в обычных условиях на открытом воздухе.
Это главное и принципиальное отличие этих материалов. За счет автоклавной обработки газобетон приобретает повышенные прочностные характеристики, т.е. при одинаковой плотности газобетонные блоки намного прочнее пенобетонных.
Что касается теплопроводности и морозостойкости, то в данном случае характеристики этих материалов приблизительно равны. За счет своей низкой теплопроводности ячеистые блоки получили заслуженное признание у строителей, ведь дополнительного утепления стен не требуется, что значительно удешевляет сам процесс строительства.
Водопоглощение у газобетона несколько выше, но незначительно, и при использовании в строительстве большой роли не играет. Утверждения некоторых производителей пенобетона, что данный материал совсем не впитывает воду и при этом является воздухопроницаемым , т.е. «дышит», не имеет под собой никаких доказательств. Любой воздухопроницаемый материал обязательно будет поглощать влагу.
Если рассматривать вопрос себестоимости производства, то у пенобетона она ниже на 30-35 % чем у газобетона. Такая разница объясняется применением более дешевых пенообразователей и автоклавной обработкой газобетона. Низкая цена пенобетона – это его несомненный плюс.
Превращение сплавов при нагревании и охлаждении. Понятие о режимах термической обработки стали. Обжиг, нормализация, закалка, отпуск, старение. Влияние термической обработки на механические свойства стали.
megaobuchalka.ru
Вяжущие автоклавного твердения | Бесплатные курсовые, рефераты и дипломные работы
Наряду с воздушными и гидравлическими вяжущими веществами в отдельную группу выделены вяжущие автоклавного твердения. Они наиболее эффективно твердеют при автоклавной обработке при давлении насыщенного пара 0,8…1,5 МПа. К их числу, относят известково-кварцевое, известково-шлаковые вяжущие и другие смеси, не способные к интенсивному твердению при 20…95°С. Вяжущие автоклавного твердения — разновидность гидравлических вяжущих, они затвердевают в среде насыщенного водяного пара, т.е. в условиях автоклавной обработки. В группу этих вяжущих входят нефелиновый цемент, известково-кремнеземнистые, изяестково-зольные, известково-шлаковые вяжущие и др.
28. Автоклавные материалы и … изделия широко применяются в современном строительстве . Они занимают третье место среди стеновых конструктивных материалов , по объему производства уступают лишь керамическому кирпичу и сборному железобетону . Ведущее место в группе автоклавных материалов занимают силикатный кирпич и стеновые изделия из ячеистого бетона . Быстрое развитие производства автоклавных материалов объясняется широкой распространенностью сырья , сравнительной простотой технологии , высоким качеством и низкой себестоимостью изделий . В настоящее время они все более широко используются в гражданском , промышленном , транспортном и других отраслях строительства . В гидротехническом строительстве автоклавные материалы также могут применяться , главным образом , выше зоны переменного уровня воды . Сдерживающими факторами широкого применения этих материалов являются их сравнительно невысокие водо — и морозостойкость .
Основными исходными компонентами автоклавных материалов являются вяжущие автоклавного твердения и заполнители . Вяжущие автоклавного твердения при нормальных температурно — влажностных условиях и при пропаривании характеризуются сравнительно низкой активностью . Однако их реакционная способность при развиваемых в автоклаве температурах и давлении существенно возрастает , что и позволяет получать искусственные каменные материалы высокой прочности .
Вяжущие автоклавного твердения делят на бесклинкерные — на основе извести с кремнеземнистыми и алюмосиликат — ными компонентами ( известково — кремнеземнистые , известково — зольные , известково — шлаковые , известково — нефелиновые и т п . ). И смешанные — на основе портландцемента или портландцемента и извести с кремнеземистыми или алюмосиликатными компонентами ( песчанистые , пуццолановые и шлаковые цементы ) .
Активность вяжущих автоклавного твердения зависит от соотношения компонентов , их химико — минералогического состава и тонкости помола . При изготовлении прочных и морозостойких изделий компоненты вяжущих должны характеризоваться пониженной водопотребностью .
В производстве автоклавных материалов наибольшее применение находит известково — кремнеземистое вяжущее , основными компонентами которого служат воздушная строительная известь и молотый кварцевый песок . Для автоклавных изделий применяется в большинстве случаев кальциевая известь , имеющая скорость гашения не более 20 мин. Роль кремнеземистого компонента вяжущих автоклавного твердения наряду с тонкомолотым песком могут выполнять зола унос — , другие промышленные отходы .
Заполнителями автоклавных силикатных бетонов являются песок , щебень или гравий . Требования к ним близки к требованиям , предъявляемым к заполнителям обычных цементных бетонов .
Твердение автоклавных материалов осуществляется в результате химических реакций между компонентами вяжущего в присутствии воды в условиях высоких давления и температуры .
Основным химическим процессом при автоклавной обработке является взаимодействие между гидроксидом кальция , кремнеземом и водой , сопровождающееся образованием гидросиликатов кальция , которые цементируют непрореагировавшие зерна в искусственные конгломераты . Скорость реакций и прочность конгломератов возрастают по мере повышения дисперсности сырьевых материалов .
refac.ru
Автоклавный газобетон - что это такое? | Бетон и строительные технологии
admin 19.11.2012
Уважаемые коллеги!
Я попытался просто доступно и понятно объяснить, что такое газобетон и в том числе автоклавный газобетон и не использовать уж слишком научную терминологию. В принципе это статья обзорная в преддверии, чтобы в дальнейшем перейти к сравнению этих видов ячеистого бетона и к их применению в строительстве.
Я решил использовать свой любимый ресурс «Wikipedia», смотрите ниже обзор по этому материалу, здесь дано определение автоклавного газобетона. Убрал лишнее, что-то свое добавил. Есть ссылки для более глубокого изучения, если будет желание посмотрите. После прочтения этой информации, мы с Вами подведем итоги и определимся какой из этих материалов выбрать в качестве приоритета для стенового материала, заливки объемных монолитов или в качестве теплоизоляции, читайте…
Газобетон — это разновидность ячеистого бетона, являющийся, по своей сути, искусственным камнем, на всей поверхности которого «расположились» отверстия-поры, представляющий собой искусственный камень с равномерно распределёнными по всему объёму сферическими порами диаметром 1-3 мм. Качество газобетона определяет равномерность распределения, равность объёма и закрытость пор.
Основными компонентами этого материала являются цемент, кварцевый песок и специализированные газообразователи, также возможно добавление гипса и извести. Сюда могут входить и промышленные отходы, такие как, например, зола и шлаки. В качестве специализированных газообразователей используются алюминиевые пасты и пудры. Сырьё смешивается с водой заливается в форму и происходит реакция воды и газообразователя, приводящая к выделению водорода, который и образует поры, смесь поднимается как тесто.
После первичного затвердевания разрезается на блоки, плиты и панели. После этого изделия подвергаются закалке паром в автоклаве, где они приобретают необходимую жёсткость, либо высушиваются в условиях электроподогрева. В зависимости от условий твердения газобетон подразделяется на автоклавный газобетон и неавтоклавный газобетон. Газобетон хорошо подлежит обработке простейшими инструментами: пилится, сверлится, строгается. В него легко забиваются гвозди, скобы.
Со временем газобетон становится твёрже и твёрже. Не горит, так как состоит только из минеральных компонентов. Относительно экологически безопасен, по естественной радиоактивности благополучнее железобетона и тяжёлого бетона, так как плотность материала меньше.
Газобетон популярен во всем мире. В настоящее время работают более 240 заводов в 50 странах, которые ежегодно производят порядка 60 млн м³ строительных изделий из газобетона.
Физико – механические свойства.
- Лучшая, по сравнению с обычным пенобетоном, теплоизоляция и прочность.
- На производство газобетонного изделия требуется меньше цемента.
- Газобетон по простоте обработки сравним с деревом: он легко пилится, сверлится, гвоздится.
Недостатки:
Классификация газобетонов По назначению:
- конструкционные.
- конструкционно-теплоизоляционные.
- теплоизоляционные.
По условиям твердения:
- автоклавные (синтезного твердения) — твердеющие в среде насыщенного пара при давлении выше атмосферного;
- неавтоклавные (гидратационного твердения) — твердеющие в естественных условиях, при электропрогреве или в среде насыщенного пара при атмосферном давлении.
- По виду вяжущих и кремнеземистых компонентов подразделяют:
- по виду основного вяжущего:
- на известковых вяжущих, состоящих из извести-кипелки более 50 % по массе, шлака и гипса или добавки цемента до 15 % по массе;
- на цементных вяжущих, в которых содержание портландцемента 50 % и более по массе;
- на смешанных вяжущих, состоящих из портландцемента от 15 до 50 % по массе, извести или шлака, или шлако-известковой смеси;
- на шлаковых вяжущих, состоящих из шлака более 50 % по массе в сочетании с известью, гипсом или щелочью;
- на зольных вяжущих, в которых содержание высокоосновных зол 50 % и более по массе;
- по виду кремнеземистого компонента:
- на природных материалах — тонкомолотом кварцевом и других песках;
- на вторичных продуктах промышленности — золе-унос ТЭС, золе гидроудаления, вторичных продуктах обогащения различных руд, отходах ферросплавов и других.
- по виду основного вяжущего:
ГОСТы и СНиПы
- ГОСТ 25485-89 «Бетоны ячеистые»
- ГОСТ 21520-89 «Блоки из ячеистых бетонов стеновые мелкие»
- СН 277-80 «Инструкция по изготовлению изделий из ячеистого бетона»
Читайте о применении ячеистых бетонов в строительстве и выборе оптимального оборудования для их производства. Также настоятельно рекомендую познакомиться с моей программой по подбору составов бетона.
На моем сайте много интересного и кроме бетона, поэтому рекомендую Вам посмотреть другие материалы о некоторых уникальных, по своему, технологиях по производству строительных материалах:
1 Грунтоблоки, уникальная технология и оборудование для их производства.
2 Вспученный вермикулит и перлит — сегодня, это новые возможности для производства и бизнеса.
3 Серобетон и сероасфальт – уникальные технологии и оборудование для их производства.
4 Ячеистый бетон — что лучше? Выбираем оптимальный вариант. Лучший и недорогой вариант технологии и оборудования для производства строительных блоков из неавтоклавного газобетона
5 Полистиролбетонные негорючие блоки для строительства методом без опалубочного строительства.
6 Сухие строительные смеси – простой и недорогой способ приготовления.
7 Производите и используйте композитную арматуру для бетона — это выгодно!
Ну вот на этой оптимистической ноте позвольте мне закончить, кликните по этой ссылке и посмотрите другие интересные материалы моего сайта.
Желаю Вам успехов!
С уважением, Николай Пастухов.
Рекомендую прочесть похожие посты!
www.helpbeton.ru
ячеистый бетон автоклавного твердения - патент РФ 2378228
Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных ячеистых бетонов автоклавного твердения для гражданского и промышленного строительства. Ячеистый бетон автоклавного твердения изготовлен из сырьевой смеси, содержащей золу-унос ТЭЦ электрофильтрового отбора с содержанием SiO2 50-65%, Аl2О 3 18-30%, Fе2О3 2-15%, СаО не более 10%, MgO не более 3% и SO3 не более 2% и свободного СаО менее 1% и удельной поверхностью, соответствующей остатку на сите 008 не более 20%, цемент, известково-зольную смесь ИЗС с соотношением извести и золы 1:1, газообразователь на основе алюминиевой пудры и шлам, приготовленный из отходов производства ячеистого бетона, характеризующийся плотностью 1200-1500 кг/м 3 и температурой 20-40°С, при следующем соотношении компонентов, мас.%: цемент 24-27, указанная ИЗС 14-21, указанная зола-унос 34-40, указанный шлам 16-21, указанный газообразователь 0,07-0,09, а также сверх 100 мас.% воду в количестве, соответствующем водотвердому соотношению В/Т=0,6-0,7. 2 з.п. ф-лы, 3 табл.
Область техники, к которой относится изобретение
Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных ячеистых бетонов автоклавного твердения для гражданского и промышленного строительства.
Уровень техники
Известен автоклавный газобетон производства ОАО «Забудова» Белорусь, содержащий цемент, негашеную известь, песок, дробленый гипсовый камень (ангидрит), крошку газобетонных изделий (отходы производства), газообразователь на основе алюминиевой пудры и воду (http://www.stromros.ru). Упомянутый газобетон характеризуется высокой прочностью до 2.5 МПа (В2.5) и достаточно низким коэффициентом теплопроводности. Среди недостатков упомянутого газобетона можно отметить низкую морозостойкость: так теплоизоляционный бетон плотностью 400-500 кг/м3 выдерживает только 15-25 циклов согласно данным журнала «Энергосбережение» № 10, 2005 г., Ю.Г.Граник. Тепловая изоляция жилых и гражданских зданий (или: http://wwvv.stroinauka.ru). К недостаткам можно также отнести использование достаточно дорогого и востребованного природного сырья и большое энергопотребление вследствие необходимости измельчения кварцевого песка.
Использование отходов производства, в частности золы или золошлаковых материалов, позволяет значительно удешевить производство ячеистых бетонов, способствует решению проблемы утилизации отходов и при этом уменьшает расход вяжущего, усадку бетона и повышает качество ячеистого бетона.
Известен автоклавный золопенобетон (см. патент № 2256632, МПК: С04В 38/10, опубл. 2005.07.20), содержащий цемент, известь, в равных частях песок и золу от сжигания осадка сточных вод, пенообразующую добавку и воду. Автоклавное твердение золопенобетона осуществляют в течение 12 ч при Т=175°С и давлении 8 атм. Золопенобетон характеризуется повышенными теплоизоляционными характеристиками.
Среди недостатков упомянутого решения можно отметить: использование песка в качестве части кремнеземсодержащего компонента, а также более низкие показатели прочности и более высокую усадку в сравнении с газобетоном.
В качестве наиболее близкого аналога для заявляемого решения принят автоклавный газобетон производства Ступинского завода ячеистого бетона, в производстве которого не применяется кварцевый песок, а в качестве кремнеземсодержащего компонента использована зола, полученная в результате сжигания бурых углей Подмосковного бассейна (см. книгу М.Ю.Лещинский. Бетоны и растворы с применением золы ТЭС. серия Строительство и научно-технический прогресс 11/1988. М.: Знание, 1988, стр.26-27). Теплоизоляционный газобетон (плотностью 400 кг/м3) согласно источнику содержит известково-зольное вяжущее, полученное путем совместного помола золы и извести, немолотую золу и газообразователь на основе алюминиевой пудры с добавкой сульфанола. Состав смеси для получения конструкционно-теплоизоляционного газобетона дополнительно содержит аглопоритовый заполнитель, гипс.
К недостаткам известного газобетона следует отнести невысокую морозостойкость, т.к. даже использование в качестве добавки к упомянутому составу цемента в количестве 100 кг на 1 м3 бетона позволяет поднять морозостойкость изделий только до марки F50.
Раскрытие изобретения
Задачей заявляемого изобретения является повышение качественных показателей ячеистого бетона автоклавного твердения на основе золы - отхода производства ТЭЦ, в частности - повышение его морозостойкости.
Поставленная задача решена за счет того, что сырьевая смесь для приготовления ячеистого бетона автоклавного твердения, содержащая золу, цемент, известково-зольную смесь, газообразователь на основе алюминиевой пудры и воду, согласно заявляемому изобретению содержит в качестве золы золу-унос ТЭЦ электрофильтрового отбора, характеризующуюся содержанием SiO2 50-65%, Аl2О3 18-30%, Fе2О3 2-15%, СаО не более 10%, MgO не более 3% и SO3 не более 2% и свободного СаО менее 1% и удельной поверхностью, соответствующей остатку на сите 008 не более 20%, соотношение извести и золы в известково-зольной смеси составляет 1:1, при этом сырьевая смесь дополнительно содержит шлам, приготовленный из отходов производства ячеистого бетона, характеризующийся плотностью 1200-1500 кг/м3 и температурой 20-40°С, при следующем соотношении компонентов, мас.%:
Цемент | 24-27 |
Известково-зольная смесь (ИЗС) | 14-21 |
Зола-унос | 34-40 |
Указанный шлам | 16-21 |
газообразователь | 0,07-0,09 |
и воду (сверх 100% сухих компонентов) в количестве, соответствующем водотвердому соотношению В/Т=0,6-0,7.
Известково-зольная смесь получена путем совместного помола дробленой извести и золы в шаровой мельнице до удельной поверхности 4000±200 см2/г.
Зола-унос - это материал, образующийся в результате сжигания углей в топках и осаждаемый из дымовых газов золоулавливающих устройств. Для заявляемого решения важно, что используют золу-унос электрофильтрового отбора, т.е. осажденную на электрофильтрах, или электрофильтровую золу, характеризующуюся определенным гранулометрическим составом, определяемым по остатку на сите № 008 (с размером отверстий 0,08 мм) не более 20%, и высоким содержанием оксидов кремния и алюминия.
Вышеприведенная совокупность существенных признаков позволяет получить новый положительный результат, а именно: значительно повысить морозостойкость изделий из автоклавного газобетона, при сохранении высоких прочностных и теплозащитных характеристиках. Так морозостойкость блоков, полученных на основе заявляемого автоклавного газобетона, соответствует 150 циклам (см. приведенные ниже примеры осуществления).
Морозостойкость зависит от поровой структуры бетона: равномерности распределения пор, отсутствия капиллярной пористости, структуры межпоровых перегородок.
Изделия, получаемые на основе заявляемого решения, характеризуются мелкопористой структурой с равномерно распределенными закрытыми порами, что во многом определяется использованием совокупности вяжущих в виде цемента и известково-зольной смеси, а также качественными показателями используемого кремнеземсодержащего компонента - золы, характеризующейся определенными химическим и гранулометрическим составами.
Существенное влияние на формирование пор оказывает также скорость отверждения бетона - темпы набора первоначальной прочности, что во многом определяется количеством используемого цемента.
Материал стенок-перегородок, образующих поры, состоит из цементного камня или близкого к нему гидросиликатного каркаса. Таким образом, структура межпоровых перегородок, определяющая показатель морозостойкости, также зависит от вида и количества используемого вяжущего.
Для заявляемой смеси используют цемент (преимущественно, портландцемент М400) в количестве 24-27% и известково-зольную смесь (ИЗС), характеризующуюся соотношением золы и извести 1:1 и удельной поверхностью 4000±200 см 2/г, в количестве 14-21%.
Используемый кремнеземистый компонент, относящийся к кислым золам, отходам сжигания каменного угля, составляет 34-40% от общего количества смеси.
Еще одним существенным компонентом смеси является шлам, приготовленный из отходов резки газобетона и используемый в количестве 16-21 мас.%.
Использование шлама, с одной стороны, позволяет получить безотходное производство, а с другой - шлам является существенным компонентом смеси, выступающим в качестве как части вяжущего, так и в качестве части заполнителя.
В результате диспергирования посредством механических воздействий и смешивания с водой получается шлам (т.н. обратный шлам), характеризующийся повышенной щелочностью за счет гидратации входящих в его состав непрореагировавших зерен цемента и извести. Высокая щелочность и дисперсность частиц обратного шлама способствуют, как известно, ускорению протекания реакций в твердеющей бетонной смеси, более быстрому набору первоначальной (распалубочной) прочности. Температура шлама 20-40°С и его плотность 1200-1500 кг/м3 обеспечивают оптимальные условия для протекания упомянутых реакций.
Количество воды затворения оказывает влияние на прочность материала стенок пор, их структуру. Избыток воды способствует образованию капиллярной пористости, что снижает морозостойкость изделий. Таким образом, количество воды, охарактеризованное водотвердым соотношением (В/Т), также является существенным фактором, оказывающим влияние на морозостойкость получаемых изделий. В/Т=0,6-0,7 по отношению к заявляемому составу смеси, является оптимальным, позволяющим достичь высокой степени морозостойкости. При увеличении В/Т>0,7 морозостойкость и прочность ячеистого бетона снижаются.
На основании вышесказанного можно сделать вывод, что именно совокупность существенных признаков заявляемого решения: состав смеси и количественные соотношения компонентов, вид и качественные характеристики используемой золы и других компонентов смеси, обеспечивают получение синергетического эффекта в виде повышенной морозостойкости газобетонных изделий. Так испытаниями независимой лаборатории подтверждено, что ячеистый бетон, получаемый согласно заявляемой смеси, имеет морозостойкость 150 циклов (F150).
Вместе с тем, заявляемый ячеистый бетон отличается высокими темпами набора первоначальной прочности, высокими прочностными и теплозащитными показателями.
Осуществление изобретения
Для изготовления ячеистого бетона используют:
- портландцемент М400,
- известь комовую, измельченную в роторной дробилке до размера 5-10 мм,
- каменноугольную золу-унос Омской ТЭЦ, характеризующуюся содержанием SiO2 50-64%, Аl2О3 18-30%, Fe 2O3 4-15%, CaO 2-10%, MgO 0,5-2,5% и SO 3<2%, свободного СаO<1% и гранулометрическим составом, соответствующим остатку на сите 008 не более 20%,
- алюминиевую пудру, например ПАП -1 или ПАП-2.
Цемент и известь, зола и алюминиевая пудра доставляются автомобильным или железнодорожным транспортом и хранятся на складе. Известково-зольная смесь и алюминиевая суспензия готовятся на месте производства.
Для приготовления известково-зольной смеси дозируют золу и дробленую известь посредством, например, бункерных тензометрических весов в равных частях (1:1) и подвергают их совместному сухому помолу в шаровой мельнице до удельной поверхности 4500±200 см2/г. Из мельницы известково-зольная смесь подается в расходный силос бетоносмесительного отделения, где она подвергается интенсивному аэрированию сжатым воздухом.
Приготовление алюминиевой суспензии осуществляют из алюминиевой пудры и ПАВ, в качестве которых обычно используют сульфанол либо стиральный порошок с низким пенообразованием (например, «Пемос»), Во избежание расслоения или оседания частиц пудры в трубопроводе или смесителе осуществляют циркуляцию суспензии пневмонасосом по замкнутому контуру. Используют суспензию при Т=15-30°С.
Отходы от срезания горбушки и резки массивов собираются в емкость обратного шлама, перемешиваются с водой, диспергируются до получения плотности 1200-1500 кг/м3, транспортируются с помощью центробежного насоса в расходную шламовую емкость бетоносмесительного отделения. При этом осуществляют постоянное перемешивание шлама мешалкой и циркуляцию. Температура шлама поддерживается в пределах 30±5°С.
Компоненты ячеистобетонной смеси дозируют в смеситель согласно заданной рецептуре. В таблице 1 приведены базовые составы для приготовления ячеистобетонной смеси (в процентном соотношении массовых частей). Воду добавляют в количестве, обеспечивающем получение водотвердого отношения смеси В/Т=0.6. В таблице 2 указан расход компонентов в кг на получение 1 м3 бетона для тех же составов.
Таблица 1 | |||||
Состав смеси № п/п | Компоненты смеси, мас.% | ||||
Цемент | ИЗС | Зола | Обратный шлам | Алюминиевая паста | |
1 | 27 | 20 | 36 | 16,014 | 0,086 |
2 | 26 | 15 | 40 | 18,022 | 0,078 |
3 | 24,5 | 20,4 | 34,7 | 20,326 | 0,074 |
Таблица 2 | |||||
Состав смеси № п/п | Расход компонентов смеси на 1 м3 газобетона, кг | ||||
Цемент | ИЗС | Зола | Обратный шлам | Алюминиевая паста | |
1 | 140 | 105 | 191 | 89 | 0,45 |
2 | 138 | 78 | 211 | 100 | 0,41 |
3 | 133 | 111 | 189 | 111 | 0,41 |
Отдозированные компоненты последовательно загружаются в смеситель в следующем порядке: шлам с водой, зола, затем цемент и известково-зольная смесь, алюминиевая суспензия в последнюю очередь.
Как только алюминий хорошо смешается с остальными компонентами, ячеистобетонную смесь заливают в форму. Залитую в форму сырьевую смесь подвергают вибрационному воздействию в течение 40 с.
Твердеющий массив подвергают выдержке в камерах предварительного твердения в течение 120-180 минут до набора распалубочной прочности 200-400 г/см2, резке и последующей автоклавной обработке при давлении 12 бар и температуре 190°С, цикл которой составляет 12 часов.
Отходы резки собирают в емкость для обратного шлама, измельчают и перемешивают с водой, обеспечивая получение плотности 1200-1500 кг/м3 и температуры 30±5°С. Готовый шлам подвергают постоянному перемешиванию. На взвешивание обратный шлам подается через «петлю определения плотности».
Физико-механические свойства ячеистого бетона, полученного в соответствие с заявляемым решением, были испытаны на соответствие требованиям действующих стандартов независимой лабораторией испытательного центра «ООО «ОмскстройЦНИЛ» системы сертификации. В таблице 3 приведены результаты упомянутых испытаний.
Таблица 3 | |||||
Состав смеси № п/п | Плотность, кг/м3 | Класс по прочности | Влажность, Не более, % | Коэффициент теплопроводности, Вт/м·°С | Марка по морозостойкости |
1 | 500 | В2.5 | 25-30 | 0.12 | F 150 |
2 | 500 | В2.5 | 25-30 | 0.12 | F 150 |
3 | 500 | В2.5 | 25-30 | 0.12 | F 150 |
Согласно данным таблицы полученный теплоизоляционный бетон с плотностью 500 кг/м 3 соответствует классу прочности В2.5, имеет влажность не более 25-30% и коэффициент теплопроводности 0.12 Вт/м·°С, что соответствует требованиям стандартов. При этом морозостойкость для всех трех составов соответствует марке F 150, а коэффициент паропроницаемости составляет 0.06 мг/м·ч·Па, что является очень высокими показателями.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Ячеистый бетон автоклавного твердения, изготовленный из сырьевой смеси, содержащей золу, цемент, известково-зольную смесь, газообразователь на основе алюминиевой пудры и воду, отличающийся тем, что сырьевая смесь содержит в качестве золы золу-унос ТЭЦ электрофильтрового отбора, характеризующуюся содержанием SiO 2 50-65%, Al2O3 18-30%, Fе2 О3 2-15%, СаО не более 10%, MgO не более 3% и SO 3 не более 2% и свободного СаО менее 1% и удельной поверхностью, соответствующей остатку на сите 008 не более 20%, соотношение извести и золы в известково-зольной смеси составляет 1:1, при этом сырьевая смесь дополнительно содержит шлам, приготовленный из отходов производства ячеистого бетона, характеризующийся плотностью 1200-1500 кг/м3 и температурой 20-40°С, при следующем соотношении компонентов, мас.%:
цемент | 24-27 |
известково-зольная смесь (ИЗС) | 14-21 |
зола-унос | 34-40 |
указанный шлам | 16-21 |
газообразователь | 0,07-0,09 |
2. Ячеистый бетон по п.1, отличающийся тем, что известково-зольная смесь получена путем совместного помола дробленой извести и золы в шаровой мельнице до удельной поверхности 4000±200 см 2/г.
3. Ячеистый бетон по п.1, отличающийся тем, что он получен путем формования с применением вибрационного воздействия на залитую в форму сырьевую смесь в течение 40 с, последующей выдержки в течение 120-180 мин в камерах предварительного твердения и автоклавной обработки в течение 12 ч при Т=190°С и давлении 12 бар.
www.freepatent.ru
Автоклавное твердение силикатных изделий | Автоклавы для строительной индустрии
Автоклав предназначен для термовлажной обработки силикатного кирпича и силикатных изделий, изделий из ячеистого бетона, бетонных блоков. В процессе термовлажной обработки происходит автоклавное твердение обрабатываемых изделий. Автоклав представляет собой цилиндрический горизонтальный сварной сосуд: трубу длиной 19м и диаметром 2м, вместимостью 17 вагонеток (V=59,65 м³), работающий под давлением пара. Снабжены быстрозакрывающимися крышками с байонетным затвором; надежным сигнально – блокировочным устройством, обеспечивающим безопасную эксплуатацию; автоматизированной системой отвода конденсата; устройством для контроля разности температур между верхней и нижней образующими корпуса; устройством автоматического регулирования технологического процесса запаривания.
Чтобы придать силикатному кирпичу необходимую прочность, его обрабатывают насыщенным паром под повышенным давлением — обычно от 8 до 12 ат (изб). При этом давлении температура насыщенного пара составляет соответственно от 174,5 до 187,1° С. При автоклавной обработке кирпича-сырца гидрат окиси кальция Ca(OH)2 вступает в химическую реакцию с кремнеземом SiO2, причем образуется цементирующее вещество (гидросиликаты кальция), которое связывает зерна кварцевого песка. В результате происходит автоклавное твердение: сырец превращается в прочный искусственный камень — силикатный кирпич.
Примерный режим работы автоклава: – 1,5 час. – подъём давления пара; – 5-6 час. – выдержка; – 1-1,5 час. – спуск пара.
В процессе автоклавной обработки (запаривания) кирпича-сырца согласно работам А. В. Волженского различают три стадии.
Первая стадия начинается с момента впуска пара в автоклав и заканчивается при наступлении равенства температур теплоносителя (пара) и обрабатываемых изделий.
Вторая стадия автоклавной обработки характеризуется постоянством температуры и давления в автоклаве. В это время получают максимальное развитие все те физико-химические процессы, которые способствуют образованию гидросиликата кальция, а следовательно, и автоклавному твердению обрабатываемых изделий
Третья стадия начинается с момента прекращения доступа пара в автоклав и включает время остывания изделий в автоклаве до момента выгрузки из него готового кирпича.
В первой стадии запаривания насыщенный пар с температурой 175°C под давлением 8 атм. впускают в автоклав с сырцом. При этом пар начинает охлаждаться и конденсироваться на кирпиче-сырце и стенках автоклава. После подъема давления пар начинает проникать в мельчайшие поры кирпича и превращается в воду. Следовательно, к воде, введенной при изготовлении силикатной массы, присоединяется вода от конденсации пара. Образовавшийся в порах конденсат растворяет присутствующий в сырце гидрат окиси кальция и другие растворимые вещества, входящие в сырец. Известно, что упругость пара растворов ниже упругости пара чистых растворителей. Поэтому притекающий в автоклав водяной пар будет конденсироваться над растворами извести, стремясь понизить их концентрацию; это дополнительно увлажняет сырец в процессе запаривания. И третьей причиной конденсации пара в порах сырца являются капиллярные свойства материала.
Роль пара при запаривании сводится только к сохранению воды в сырце в условиях высоких температур. При отсутствии пара происходило бы немедленное испарение воды, а следовательно, высыхание материала и полное прекращение реакции образования цементирующего вещества – гидросиликата.
С того момента, как в автоклаве будет достигнута наивысшая температура, т. е. 170 – 200, наступает вторая стадия запаривания. В это время автоклавной обработки максимальное развитие получают химические и физические реакции, которые ведут к образованию монолита. К этому моменту поры сырца заполнены водным раствором гидрата окиси кальция Са(ОН)2, непосредственно соприкасающимся с кремнеземом SiO2 песка.
Наличие водной среды и высокой температуры вызывает на поверхности песчинок некоторое растворение кремнезема, образовавшийся раствор вступает в химическую реакцию с образовавшимся в течение первой стадии запаривания водным раствором гидрата окиси кальция и в результате получаются новые вещества – гидросиликаты кальция:
Сначала гидросиликаты находятся в коллоидальном (желеобразном) состоянии, но постепенно выкристаллизовываются и, превращаясь в твердые кристаллы, сращивают песчинки между собой. Кроме того, из насыщенного водного раствора гидрат окиси кальция также выпадает в виде кристаллов и своим процессом кристаллизации участвует в сращивании песчинок.
Таким образом, во второй стадии запаривания образование гидросиликатов кальция и перекристаллизация их и гидрата окиси кальция вызывают постепенное твердение кирпича-сырца.
Третья стадия запаривания протекает с момента прекращения доступа пара в автоклав, т. е. начинается падение температуры в автоклаве, быстрое или медленное в зависимости от изоляции стенок автоклава и наличия перепуска пара. Происходит снижение температуры изделия и обеднение его водой, т. е. вода испаряется и повышается концентрация раствора, находящегося в порах. С повышением концентрации гидрата окиси кальция и снижением температуры цементирующего вещества силикаты кальция становятся более основными, и это продолжается до тех пор, пока кирпич не будет выгружен из автоклава. В результате усиливается твердение гидросиликатов кальция и, следовательно, повышается прочность силикатного кирпича. Одновременно пленки цементирующего вещества сильней обогащаются выпадающим из раствора гидратом окиси кальция.
Механическая прочность силикатного кирпича, выгруженного из автоклава после автоклавной обработки, ниже той, которую он приобретает при последующем выдерживании его на воздухе. Это объясняется происходящей карбонизацией гидрата окиси кальция за счет углекислоты воздуха по формуле
Таким образом, полный технологический цикл запаривания кирпича в автоклаве состоит из операций очистки и загрузки автоклава, закрывания и закрепления крышек, перепуска пара; впуска острого пара, выдержки под давлением, второго перепуска, выпуска пара в атмосферу, открывания крышек и выгрузки автоклава. Совокупность всех перечисленных операций составляет цикл работы автоклава, который равен 10 – 13 час.
Запаривание кирпича в автоклавах для автоклавного твердения требует строгого соблюдения температурного режима: равномерного нагревания, выдержки под давлением и такого же равномерного охлаждения. Нарушение температурного режима приводит к браку.
Для контроля за режимом запаривания на автоклавах установлены манометры и самопишущие дифманометры, снабженные часовым механизмом, записывающим на барограмме полный цикл запаривания кирпича.
С прекращением подачи пара начинается падение температуры в автоклаве, быстрое или медленное в зависимости от изоляции стенок автоклава и наличия перепуска пара. Происходит снижение температуры изделия и обеднение его водой, так как вода испаряется.
Из автоклава силикатный кирпич поступает на склад.
avtoklav.info