Наружная многослойная монолитная стена многоэтажного здания. Наружная стена монолитная
Наружные стены монолитных зданий - интересное
Наружные стены монолитных зданий
Стеновая система с широким шагом несущих стен
Рис.1. Стеновая конструктивная система монолита.
По краям стен и проемов устанавливают вертикальные каркасы или гнутые стержни, приваренные к вертикальным сеткам. Гнутые стержни располагают и в местах пересечений стен. При процессе возведения стен соблюдают непрерывность армирования.
В наружные стенки приставных лоджий прокладывают теплоизоляционные вкладыши.
Рис.2. Узлы армирования внутренних стен.
Монолитные перекрытия в конструктивной стеновой системе работают как неразрезные балочные системы или как плиты, защемленные по трем или четырем сторонам (рис. 3.). Армирование плит перекрытий производят арматурными (сварными или вязанными) сетками. Сетки укладывают в нижнем сечении плиты, а в местах опирания на вертикальные стены - в верхнем сечении. В местах опирания плит на наружные стены прокладывают теплоизоляционные пакеты. Теплоизоляцию плиты перекрытия соблюдают при устройстве лоджий и балконов. В конструкциях монолитных зданий допускается устройство перекрытий из сборных панелей.
Рис.3. Планы перекрытий монолитного здания стеновой конструктивной системы.
Каркасная конструктивная система монолита представляет свободу в планировке жилых помещений, а также возможность устройства нежилых объемов (магазины, кафе, рестораны) в нижних этажах зданий (рис.4). Также как и в стеновой системе соблюдают принцип непрерывного
Рис.4. Каркасная безригельная система.
армирования при возведении несущих конструкций. Колонны армируют вертикальными стержнями с замкнутыми хомутами или вертикальными каркасами. Монолитные перекрытия армируют меж колоннами сетками и под колоннами, рассчитанными на усилия от продавливания. Вариантами каркасной системы служат конструктивные системы с плоскими пилонами (плоские колонны) (рис.5 и 6). Они могут быть решены как с
Рис.5. Конструктивная безригельная система с несущими пилонами.
устройством ригелей в плоскости перекрытия, так и без них. Так же, как и каркасные системы, они обладают свободой планировочных решений, но имеют некоторые недостатки по сравнению с каркасной системой:
- колонны заменены плоскими участками стен, более развитыми по сравнению с сечением колонн;
- при ригельной системе появляются балки в интерьере помещений.
Рис.6. Конструктивная система монолита с несущими пилонами.
Следует отметить, что с точки зрения конструктивного решения ригельная система имеет преимущества перед безбалочной в связи с упрощением армирования перекрытий, не требующих усиления его надколонной части.
Габариты пилонов колеблются 200-250x1200-1500 мм. Армирование пилонов назначают по расчету.
Каркасная система с плоским перекрытием коробчатого типа (рис.7) применяют при большом шаге расстановки колонн - 7,2x7,2 м или
Рис.7. Каркасная система с плоским перекрытием коробчатого сечения.
Плоская плита перекрытия высотой в 400 мм представляет собой систему перекрестных балок (ребер) с уложенными между ними вкладышами из теплоизоляционных материалов (пенополистирол, минераловатные плиты и пр.). Верхняя (толщиной 60 мм) и нижняя (толщиной 50 мм) плоскости плиты связаны между собой ребрами. Верхняя и нижняя плоскость плиты армируется конструктивными сетками, а ребра - сварными или вязаными каркасами. По осям колонн располагают основные балки шириной порядка 400 мм и армируют рабочей арматурой. Второстепенные (дополнительные) балки, идущие с шагом 600 мм, имеют ширину 120-150 мм, их армирование конструктивное.
Каркасная система с плоским коробчатым перекрытием имеет большую несущую способность, хорошие звукоизоляционные свойства и достаточно проста в изготовлении.
Наружные стены монолитных зданий могут иметь многовариантные решения:
- стены полностью монолитные;
- стены слоистые с монолитным железобетонным слоем;
- стены, выполненные из не бетонных материалов (кирпич, ячеистобетонные и керамзитобетонные блоки).
Полностью монолитные стены возводят из бетона плотностью 1000-1400 кг/м 3. Современные требования строительной теплотехники ограничивают их применение южными районами страны.
Монолитные слоистые наружные стены имеют внутренний несущий железобетонный слой, а для выполнения наружного слоя существует ряд модификаций: -
А - наружный монолитный слой;
Б - наружный слой из кирпичной кладки;
В - с наружной облицовкой железобетонными скорлупами.
А - Монолитные слоистые наружные стены (рис. 8) возводят непосредственно на строительной площадке с предварительной установкой в опалубку термопакетов. После чего производят одновременное бетонирование наружного (не менее 70 мм) и внутреннего слоев. В уровне перекрытия бетонные слои стены соединяют бетонными шпонками. Между шпонками укладывают несгораемый утеплитель, играющий роль поэтажного разделителя.
Б - Монолитная наружная несущая стена с наружным слоем из кирпичной кладки (рис. 9)
В первую очередь возводят внутренний монолитный слой, к которому при помощи анкеров крепят утеплитель. Для соединения внутреннего
Рис.8. Монолитная слоистая наружная стена.
монолитного слоя и кирпичной кладки закладывают металлические связи, на которые накалывают утеплитель.
Монолитная плита перекрытия заходит за несущий внутренний бетонный слой наружной стены в виде решетки с гнездами утеплителя. При перекрытиях, выполненных из сборных железобетонных плит, в теле стены устраивают монолитный пояс, связанный арматурой со сборными элементами перекрытия.
По высоте стены в уровне перекрытия устанавливают по наружной поверхности облицовочную плитку под кирпич.
Рис.9. Монолитная слоистая наружная стена с облицовкой кирпичом.
В - Трехслойная монолитная наружная стена с наружной облщовкойжелезобетонными скорлупами (рис. 10). Скорлупа может иметь любую конфигурацию сечения.
Монолитная плита перекрытия, как и в описанном выше варианте, заходит за внутренний железобетонный слой стены в виде решетчатой конструкции с гнездами утеплителя.
Технология производства такой конструкции предусматривает в первую очередь установку и крепление к перекрытию и внутренним поперечным монолитным стенам железобетонных скорлуп. Затем на скорлупу с внутренней стороны наклеивают утеплитель. После чего приступают к армированию и бетонированию в щитовой опалубке внутреннего несущего
Рис.10. Монолитная слоистая наружная стена с облицовкой железобетонными
слоя стены. Перекрытие, как и в варианте Б - может быть решено с применением сборных плит.
Рекомендуем ознакомится: http://studopedia.ru
fix-builder.ru
Наружная многослойная монолитная стена многоэтажного здания
Изобретение относится к строительству и может быть использовано при возведении наружных многослойных стен монолитных многоэтажных зданий. Технический результат: поддержание нормированных теплоизоляционных параметров наружной многослойной монолитной стены в изменяющихся погодно-климатических условиях эксплуатации, особенно при отрицательных температурах наружного воздуха, повышение эффективности эксплуатации. Наружная многослойная монолитная стена многоэтажного здания содержит монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры. На внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, причем на одной части изоляционного слоя, разделенного плоским разъемом, касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки. 3 ил.
Изобретение относится к строительству и может быть использовано при возведении наружных многослойных стен монолитных многоэтажных зданий.
Известна трехслойная монолитно-бетонная наружная стена здания (см. а.с. №1527390, МКИ Е04В 2-84, 1989. Бюл. №45), включающая связанные между собой соединительными элементами внутренние и наружные бетонные слои, средний слой плитного утеплителя и арматуру, расположенную в бетонных слоях. При этом арматура выполнена в виде волнообразных сеток, высота волн которых равна толщине слоя плитного утеплителя.
Недостатком является снижение прочностных параметров наружной стены здания за счет деформации утеплителя при смещении бетонных слоев.
Известна наружная многослойная монолитная стена многоэтажного здания (см. свидетельство на похожую модель №41475, МПК Е04В 2/84, Е04С 2/26, опубл. 27.10.2004), содержащая монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры.
Недостатком является снижение теплозащитных свойств из-за понижения «застойных» зон в воздушных отверстиях, приводящих в местах контакта внутренней поверхности теплоизоляционного слоя с воздухом в пограничном слое воздушного отверстия, когда возникает встречно поправка или градиент температур от теплоизоляционного слоя к ламинарно перемещающему потоку воздуха, а от данных воздуха к теплоизоляционному слою. Это особенно существенно при отрицательных температурах окружающей среды, когда со стороны наружного воздуха интенсивность промерзания монолитного бетонного слоя провисает порог прогрева монолитного бетонного слоя со стороны внутреннего здания.
На внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнен криволинейными канавками, причем на одной части теплоизоляционного слоя разделенные плоским разъемом касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки.
Технической задачей предлагаемого изобретения является поддержание нормированных теплоизоляционных параметров наружной многослойной монолитной стены в изменяющихся погодно-климатических условиях эксплуатации, особенно при отрицательных температурах наружного воздуха путем устранения «застойных зон» воздуха в отверстиях при расположении связей, за счет турбулизации пограничного слоя на внутренней поверхности теплоизоляционного слоя, посредством выполнения криволинейных канавок, касательные которых имеют противоположное направление относительно движения часовой стрелки.
Технический результат на повышение эффективности эксплуатации достигается тем, что наружная многослойная монолитная стена многоэтажного здания содержит монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры, при этом на внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, причем на одной части изоляционного слоя, разделенного плоским разъемом касательных криволинейных канавок, имеется направление по ходу движения часовой стрелки, а из второй части теплоизоляционного слоя касательные криволинейных канавок имеют направление против хода движения часовой стрелки.
На фиг.1 изображена наружная монолитная трехслойная стена с заглушками, расположенными в теле теплоизоляционного слоя. На фиг.2 - план расположения гибких связей в вертикальном канале, на фиг.3 - внутренняя поверхность теплоизоляционного слоя с криволинейными канавками.
Наружная многослойная монолитная стена, образованная из двух бетонных слоев 1 и 2 и расположенным между ними теплоизоляционным слоем 3, выполненным из плитного утеплителя, например пенополистерола, разделенным по всей высоте вертикальным плоским разъемом 4. В теплоизоляционном слое образованы отверстия 5, сквозь которые пропущены гибкие связи 6, 7, прикрепленные своими концами к арматуре 8 бетонных слоев. Связи закрепляются в отверстиях при помощи фиксаторов-заглушек 9, располагаемых непосредственно в толще теплоизоляционного слоя, но по разные стороны от вертикального разъема 4.
Воздух, находящийся в отверстиях 5, контактирует с внутренними поверхностями как теплоизоляционного слоя 3, так и монолитных бетонных слоев 1 и 2, при этом, особенно с отрицательными температурами наружного воздуха, процесс охлаждения со стороны наружного воздуха по монолитным бетонным слоям 1 и 2 идет более интенсивно, т.е. слой 2 быстро охлаждается и градиент температуры (gradt1) перемещается к внутренней поверхности контакта с воздухом в отверстиях 5, осуществляющих энергичный отбор тепла в пограничном слое. Одновременно при прогреве монолитных бетонных слоев 1 и 2 со стороны внутреннего воздуха здания процесс нагрева идет менее интенсивно и градиент температур (gradt2) перемещается (см., например, стр.90-92. Исаченко В.П. и др. Теплопередача. М.: Энергоиздат. 1981 - 416 с., ил) практически со незначительным смещением к внутренней поверхности отверстия 5, т.е. прогревается слой 1 и лишь частично нагревается слой 2, осуществляется подвод теплоты в пограничный слой контактируемого воздуха. В результате в воздушной прослойке теплофизические параметры воздуха в различных по периметру отверстиях 5 пограничных слоях при ламинарном движении имеют отличительные значения по теплозащитным свойствам, что в конечном итоге существенно ухудшает теплозащиту в целом всей наружной многослойной наружной стены.
Для устранения данного явления необходимо осуществлять турбулизации пограничных слоев воздуха, контактирующих с внутренними поверхностями различной температуры (разных градиентов температур gradt1 и gradt2) монолитных бетонных слоев 1 и 2, что и происходит при выполнении на внутренних поверхностях 10 и 11 теплоизоляционного слоя 3 криволинейных канавок 12 и 13. На одной части 14 поверхности 10 теплоизоляционного слоя 3. Касательная криволинейных канавок 12 имеет направление движения по ходу часовой стрелки (см., стр.509, например, Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1965 - 872 с., ил.), а на другой части 15 касательных криволинейных канавок 13 имеется направление движения против хода часовой стрелки.
В этом случае пограничный слой воздуха, контактирующий с поверхностью 10, перемещаясь по криволинейным канавкам 12 части 14 теплоизоляционного слоя 3, закручивается по ходу движения часовой стрелки, образуя микрозавихрения. Одновременно пограничный слой воздуха, контактирующий с поверхностью 10 перемещаясь по криволинейным канавкам 13 части 15 теплоизоляционного слоя 3 закручивается против хода движения часовой стрелки, образуя микрозавихрения, вращающиеся в данном направлении. При этом на разъеме 4 встречаются микрозавихрения с противоположно направленном вращательном движении, что приводит к образованию микровзрывов (см., например, Меркулов В.П. Ветровой эффект и его применение в технике. Самара, 2002 г. - 387 с., ил.) с резко выраженной турбулизацией пограничного слоя как на внутренней поверхности 10 теплоизоляционного слоя 3, так и частично на внутренней поверхности монолитного бетонного слоя 2. Аналогичные процессы происходят и на поверхности 11 теплоизоляционного слоя 3 с турбулизацией пограничного слоя воздуха.
В результате турбулизация режимов движения воздуха в пограничных слоях по всему периметру отверстия 5 усредняет теплообменные процессы как нагрева слоев 1 и 2 внутренним воздухом здания, так и охлаждения их наружным воздухом, поддерживая заданную теплоизоляционную способность воздуха в отверстиях 5.
Гибкие связи 6 и 7 расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов. При вертикальном смещении слоя 1 относительно слоя 2 в гибких связях возникают деформации, вызывающие вибрационные колебания, воздействующие на упругую сплошную среду воздушных вертикальных потоков. Известно, что вибрационные колебания элементов упругих связей создают дополнительные давления в среде воздушных вертикальных каналов. Это приводит к увеличению величины смещения слоя 1 относительно слоя 2 и дополнительно способствует, в конечном итоге, разрушению гибких связей. Величина дополнительного давления в воздушной сплошной среде вертикальных каналов определяется максимумом амплитуды вибрационных колебаний, которые ограничиваются шириной воздушного вертикального канала.
Для устранения возможности возрастания давления в воздушных вертикальных полостях элементы гибких связей 6, 7 расположены таким образом, что в плане воздушного вертикального канала они изображаются в виде геометрических фигур как сужения, где наблюдается возрастание давления воздушной упругой сплошной среды, так и расширения - уменьшения давления в воздушной упругой среде, сосредоточенной между данными элементами гибких связей. Последовательное пространственное размещение элементов парных гибких связей в виде геометрических фигур сужения и расширения приводит к пульсирующему изменению давления по длине гибких связей в воздушных вертикальных полостях, что обеспечивает поддержание усредненного постоянного давления.
Оригинальность предлагаемого изобретения заключается в поддержании в изменяющихся погодно-климатичсских условиях эксплуатации здания, особенно при отрицательных температурах наружного воздуха, нормированных теплоизоляционных параметров наружной многослойной монолитной стены путем обеспечения постоянства теплофизических свойств воздуха по всему пространству воздушного отверстия, для расположения связей, соединяющих бетонные слои. При этом теплоизоляционные параметры воздуха в отверстиях определяются режимом движения пограничного слоя по периметру воздушного отверстия, достигая оптимальных значений при его турбулизации. Кроме того достигается повышение прочностных параметров наружной многослойной монолитной стены многоэтажного здания за счет выполнения гибких связей из последовательно соединенных элементов с пространственным расположением в воздушных отверстиях, устраняющих возрастание в них давления при вибрационных колебаниях воздушной среды.
Наружная многослойная монолитная стена многоэтажного здания, содержит монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга равном толщине вертикального воздушного канала и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры, отличающаяся тем, что на внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, причем на одной части изоляционного слоя, разделенного плоским разъемом, касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки.
www.findpatent.ru
ЛЕКЦИЯ+19РЭА
ЛЕКЦИЯ 19. Наружные стены и их элементы (продолжение).
Монолитные, сборно-монолитные бетонные стены и крупноблочные стены
Монолитные и сборно-монолитные бетонные наружные стены применяют в монолитных и сборно-монолитных домах различных строительных систем. Есть одно-, двух- и трехслойные конструкции стен. Наиболее широко распространены благодаря технологичности однослойные конструкции. В зависимости от эффективности заполнителя, требуемой несущей способности и климатических условий строительства толщина однослойных стен составляет 300…500 мм . Как правило, в состав однослойной монолитной стены входят помимо основного конструктивно-теплоизоляционного бетонного слоя наружный защитно-отделочный и внутренний отделочный слой раствора.
Слоистые стены иногда проектируют монолитными, но чаще (по технологическим соображениям) сборно-монолитными (см. Листы 26…35 сборника «Конструктивные решения малоэтажных зданий» Луков А.В. и Ковалев А.О.). Двухслойные стены содержат несущий слой из тяжелого или конструктивного легкого бетона толщиной не менее 120 мм и утеплитель. Сборно-монолитные двухслойные стены имеют два конструктивных варианта: с расположением несущего монолитного бетонного слоя с наружной или с внутренней стороны. При расположении с наружной стороны утепляющий слой чаще всего проектируют в виде сборных декоративно-теплоизоляционных элементов — офактуренных однослойных легкобетонных панелей-скорлуп.
Утепление с внутренней стороны двухслойных стен выполняют из жестких плит или блоков (автоклавный пенобетон, пеностекло или др.), выкладываемых на растворе в виде самонесущих стенок высотой в этаж на перекрытии. Этот вариант двухслойных стен технологически наиболее удобен, но в теплотехническом отношении приемлем только в районах с мягким климатом и положительными значениями расчетных температур наружного воздуха в зимнее время. Трехслойные монолитные стены проектируют с гибкими или жесткими связями между бетонными слоями. Конструкции связей и материалы утеплителя аналогичны используемым в — трехслойных бетонных панелях. Трехслойные сборно-монолитные стены имеют внутренний бетонный монолитный несущий элемент и сборный и защитно-декоративный наружный.
Защитно-декоративный элемент представляет собой или двухслойную панель с утепляющим слоем с внутренней стороны, или отдельные офактуренные бетонные плиты, к которым прикреплены плиты эффективного утеплителя.
Так же, как и в сборно-монолитных двухслойных стенах, защитно-декоративные элементы трехслойных стен могут служить наружной опалубкой при бетонировании несущего слоя или навешиваться на последний после его возведения и распалубки.
Пространственное взаимодействие наружных стен с внутренними и с перекрытиями обеспечивается различными способами в зависимости от технологии возведения, материалов и вида (сборных, монолитных) конструкций (рис. 8).
Монолитные перекрытия защемляют в стенах с полной анкеровкой верхней арматуры перекрытий в стене. Сборные перекрытия опирают на наружные стены по слою цементно-песчаного раствора марки 100 и связывают со стенами специальными стальными анкерами.
Изоляционные качества монолитных бетонных стен благодаря отсутствию стыков оказываются выше, чем у сборных стен.
Виды отделок фасадных поверхностей в монолитном домостроении в целом не отличаются от применяемых в панельном домостроении.
Крупноблочные дома обычно проектировали бескаркасными на основе двух конструктивных схем: с продольными стенами для пятиэтажных зданий и с поперечными — для многоэтажных. Иногда применяли комбинированную конструктивную систему крупноблочных зданий с внутренним каркасом. Соответственно крупноблочные стены выполняют несущими или самонесущими с двух-, трех- или четырехрядной либо двухблочной разрезкой по высоте этажа (см. практические занятия) на блоки. Выбор разрезки зависит от материала и статической функции стены. Так, двухблочную разрезку используют только для самонесущих стен из автоклавного, ячеистого бетона.
Для самонесущих стен часто используют двухблочную разрезку.
Наиболее распространены крупноблочные конструкции из легких бетонов, выполненные по двухрядной разрезке.
При любой из разрезок соблюдают принцип перевязки швов и укладки блоков на раствор. В соответствии с расположением на фасаде различают блоки простеночные, перемычечные, подоконные, цокольные, карнизные, парапетные, рядовые и угловые. Перемычечные блоки имеют четверти с внутренней стороны: поверху — для опирания перекрытий, понизу — для установки заполнения проема. В простеночных блоках для установки заполнения проемов предусмотрены четверти по вертикальным боковым граням. С наружной стороны блоки имеют защитно-отделочный слой. В легкобетонных и кирпичных блоках — это декоративный бетон на белом или цветном цементе с заполнителем из крошки декоративного камня, в блоках из ячеистого бетона — поризованный раствор, дробленые каменные материалы или покраска — полихлорвиниловая либо поливинилацетатная.
Устойчивость крупноблочных наружных стен гарантируется их пространственным взаимодействием с перекрытиями и внутренними поперечными стенами, которые объединяют с наружными специальными стальными связями.
Изоляционная способность крупноблочной стены обеспечивается по телу блоков — их соответствующей теплотехническому расчету толщиной и водонепроницаемым защитно-отделочным наружным слоем, по стыкам блоков — их заполнением утепляющими вкладышами, компенсирующим ослабление изоляции в местах разрезки стены на блоки. Возможность сквозного проникания холодного наружного воздуха или атмосферной влаги через стены по стыкам между блоками исключают герметизацией внешней зоны стыков (устий). Герметизацию стыков крупноблочных стен выполняют по принципу «закрытого» стыка. Внутреннюю зону горизонтальных стыков заполняют цементным раствором, через который передаются силовые воздействия, а внутренняя зона вертикальных стыков — конструкционно-теплоизоляционным легким бетоном.
studfiles.net
Наружная многослойная монолитная стена многоэтажного здания
Изобретение относится к строительству и может быть использовано при возведении наружных многослойных стен монолитных многоэтажных зданий. Технический результат: повышение эксплуатационной надежности. Наружная многослойная монолитная стена многоэтажного здания содержит монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры, причем на внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, кроме того, на одной части изоляционного слоя, разделенного плоским разъемом, касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки. 4 ил.
Изобретение относится к строительству и может быть использовано при возведении наружных многослойных стен монолитных многоэтажных зданий.
Известна наружная многослойная монолитная стена многоэтажного здания (см. свидетельство на полезную модель №41475, МПК E0B 2/84, E04C 2/26, опубл. 27.10.2004), содержащая монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями, разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры.
Недостатком является снижение теплозащитных свойств из-за наличия «застойных» зон в воздушных отверстиях, приводящих в местах контакта внутренней поверхности теплоизоляционного слоя с воздухом в пограничном слое воздушного отверстия, когда возникает встречно направленные градиенты температур от теплоизоляционного слоя к ламинарно перемещающему потоку воздуха и от данного воздуха к теплоизоляционному слою. Это особенно существенно при отрицательных температурах окружающей среды, когда со стороны наружного воздуха интенсивность промерзания монолитного бетонного слоя провисает порог прогрева монолитного бетонного слоя со стороны внутреннего воздуха здания.
Известна наружная многослойная монолитная стена многоэтажного здания (см. патент РФ №2466244, МПК E04B 2/84, опубл. 10.11.2012, №31), содержащая монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры, причем на внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, кроме того, на одной части изоляционного слоя, разделенного плоским разъемом, касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки.
Недостатком является снижение эксплуатационной надежности связей из-за пульсирующего воздействия давления в воздушной упругой среде теплоизоляционного слоя по длине элементов связей, особенно при отрицательных температурах наружного воздуха, когда плотность его возрастает и соответственно увеличиваются деформационные нагрузки при различии вертикального смещения монолитных бетонных слоев как со стороны внутреннего - теплого, воздуха многоэтажного здания, так и со стороны наружного - холодного, воздуха окружающей среды.
Технической задачей предлагаемого изобретения является поддержание нормированных прочностных параметров связей между монолитными бетонными слоями, особенно при отрицательных температурах наружного воздуха, путем снижения вибрационного колебания, обусловленного пульсирующим воздействием изменяющегося давления воздушного потока по длине элементов гибких связей, перемещающегося по геометрическим фигурам сужения и расширения.
Технический результат по повышению эксплуатационной надежности достигается тем, что нарушается многослойная монолитная стена многоэтажного здания, содержащая монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры, причем на внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, кроме того, на одной части изоляционного слоя, разделенного плоским разъемом, касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки, при этом соединяющиеся бетонные слои выполнены из биметалла, причем материал биметалла со стороны внутреннего воздуха многоэтажного здания имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала биметалла со стороны наружного воздуха.
На фиг.1 изображена наружная монолитная трехслойная стена с заглушками, расположенными в теле теплоизоляционного слоя; на фиг.2 - план расположения гибких связей в вертикальном канале; на фиг.3 - внутренняя поверхность теплоизоляционного слоя с криволинейными канавками; на фиг.4 - разрез элемента связи из биметалла.
Наружная многослойная монолитная стена состоит из двух бетонных слоев 1 и 2 с расположенным между ними теплоизоляционным слоем 3, выполненным из плитного утеплителя, например пенополистерола, разделенным по всей высоте вертикальным плоским разъемом 4. В теплоизоляционном слое образованы отверстия 5, сквозь которые пропущены гибкие связи 6, 7, прикрепленные своими концами к арматуре 8 бетонных слоев. Связи закрепляются в отверстиях при помощи фиксаторов-заглушек 9, располагаемых непосредственно в толще теплоизоляционного слоя, но по разные стороны от вертикального разъема 4.
Гибкие связи 6 и 7 выполнены из биметалла, причем материал 10 со стороны внутреннего воздуха многоэтажного здания, например, из алюминия имеет коэффициент теплопроводности 204 Вт/(м·град), а материал 11 биметалла со стороны внешнего воздуха окружающей среды, например, из латуни имеет коэффициент теплопроводности 85 Вт/(м·град), т.е. соотношение коэффициентов теплопроводности материалов 10 и 11 находится в пределах от 2,0 до 2,5 (см., например, Нащокин В.В. Техническая термодинамика и теплопередача. М., 1980. - 469 с., ил.).
При различных температурных градиентах (gradt1 и gradt2), воздействующих на биметалл гибких связей 6 и 7, наблюдается постоянно действующая термовибрация элементов по всей длине связи (см., например, Дмитриев А.Н. Биметаллы. Пермь, 1991. - 416 с., ил.). В результате сложения встречно направленных вибрационных колебаний, обусловленных пульсирующим воздействием измененного движения воздушного потока в геометрических фигурах сжатия и расширения, созданных из элементов гибких связей 6 и 7, и термовибрации при выполнении этих связей из биметалла наблюдается минимизация амплитуды вибрационных колебаний, практически угрожающих разрушением гибких связей 6 и 7.
Воздух, находящийся в отверстиях 5, контактирует с внутренними поверхностями как теплоизоляционного слоя 3, так и монолитных бетонных слоев 1 и 2, при этом особенно при отрицательных температурах наружного воздуха процесс охлаждения со стороны наружного воздуха по монолитным бетонным слоям 1 и 2 идет более интенсивно, т.е. слой 2 быстро охлаждается и градиент температуры (gradt1) перемещается к внутренней поверхности контакта с воздухом в отверстиях 5, осуществляющих энергичный отбор тепла в пограничном слое. При одновременном прогреве монолитных бетонных слоев 1 и 2 со стороны внутреннего воздуха процесс нагрева идет менее интенсивно и градиент температур (gradt2) переменно (см., например, стр.90-92. Исаченко В.П. и др. Теплопередача. М.: Энергоиздат. - 416 с., ил.), практически незначительно смещается к внутренней поверхности отверстия 5, т.е. прогревается слой 1 и лишь частично нагревается слой 2. Осуществляется подвод теплоты в пограничный слой контактируемого воздуха, в результате в воздушной прослойке теплофизические параметры воздуха по периметру отверстия 5 в пограничных слоях при ламинарном движении имеют отличительные значения по теплозащитным свойствам, что в конечном итоге существенно ухудшает теплозащиту в целом всей наружной многослойной стены. Для устранения данного явления необходимо осуществлять турбулизацию пограничных слоев воздуха, контактирующих с внутренними поверхностями различной температуры (разных градиентов температур gradt1 и gradt2) бетонных слоев 1 и 2, что и происходит при выполнении на внутренних поверхностях 10 и 11 теплоизоляционного слоя 3 криволинейных канавок на одной части 14 поверхности 10 теплоизоляционного слоя 3. Касательная криволинейных канавок 12 имеет направление движения по ходу часовой стрелки (см., стр.509, например, Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1965. - 872 с., ил.), а на другой части 15 касательных криволинейных канавок 13 имеется направление движения против хода часовой стрелки.
В этом случае пограничный слой воздуха, контактирующий с поверхностью 10, перемещаясь по криволинейным канавкам 12 части 14 теплоизоляционного слоя 3, закручивается по ходу движения часовой стрелки, образуя микрозавихрения.
Одновременно пограничный слой воздуха, контактирующий с поверхностью 10, перемещаясь по криволинейным канавкам 13 части 15 теплоизоляционного слоя 3, закручивается против хода движения часовой стрелки, образуя микрозавихрения, вращающиеся в данном направлении. При этом на разъеме 4 встречаются микрозавихрения с противоположно направленным вращательным движением, что приводит к образованию микровзрывов (см., например, Меркулов В.П. Ветровой эффект и его применение в технике. Самара, 2002 г. - 387 с, ил.) с резко выраженной турбулизацией пограничного слоя как на внутренней поверхности 10 теплоизоляционного слоя 3, так и частично на внутренней поверхности монолитного бетонного слоя 2. Аналогичные процессы происходят и на поверхности 11 теплоизоляционного слоя 3 с турбулизацией пограничного слоя воздуха.
В результате турбулизация режимов движения воздуха в пограничных слоях по всему периметру отверстия 5 усредняет теплообменные процессы как нагрева слоев 1 и 2 внутренним воздухом здания, так и охлаждения их наружным воздухом, поддерживая заданную теплоизоляционную способность воздуха в отверстиях 5.
Гибкие связи 6 и 7 расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов. При вертикальном смещении слоя 1 относительно слоя 2 в гибких связях возникают деформации, вызывающе вибрационные колебания, воздействующие на упругую сплошную среду воздушных вертикальных потоков. Известно, что вибрационные колебания элементов упругих связей создают дополнительные давления в среде воздушных вертикальных каналов. Это приводит к увеличению величины смещения слоя 1 относительно слоя 2 и дополнительно способствует в конечном итоге разрушению гибких связей. Величина дополнительного давления в воздушной сплошной среде вертикальных каналов определяется максимумом амплитуды вибрационных колебаний, которые ограничиваются шириной воздушного вертикального канала.
Для устранения возможности возрастания давления в воздушных вертикальных полостях элементы гибких связей 6, 7 расположены таким образом, что в плане воздушного вертикального канала они изображаются в виде геометрических фигур как сужения, где наблюдается возрастание давления воздушной упругой сплошной среды, так и расширения, где наблюдается уменьшение давления в воздушной упругой среде, сосредоточенной между данными элементами гибких связей. Последовательное пространственное размещение элементов парных гибких связей в виде геометрических фигур сужения и расширения приводит к пульсирующему изменению давления по длине гибких связей в воздушных вертикальных полостях, что обеспечивает поддержание усредненного постоянного давления.
Оригинальность предлагаемого изобретения заключается в поддержании нормированной надежности наружной монолитной стены за счет улучшения условий эксплуатации связи при вертикальных смещениях монолитных бетонных слоев, особенно при наличии отрицательных температур окружающей среды, путем практического устранения деформационной вибрации посредством сложения ее со встречно направленной термовибрацией элементов гибких связей, обусловленной выполнением их из биметалла, таким образом, что материал биметалла со стороны внутреннего воздуха многоэтажного здания имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал биметалла со стороны наружного холодного воздуха.
Наружная многослойная монолитная стена многоэтажного здания, содержащая монолитные бетонные слои, теплоизоляционный слой с воздушными отверстиями и разделенный плоским разъемом, соединяющие бетонные слои связи, расположенные в отверстиях, причем отверстия для расположения связей выполнены в виде вертикальных воздушных каналов, при этом связи расположены попарно на расстоянии друг от друга, равном толщине вертикального воздушного канала, и каждая из связей состоит из не менее четырех последовательно соединенных элементов, причем пространственное размещение соответствующих элементов в каждой из попарно расположенных связей соответственно выполнено в виде суживающейся и расширяющейся фигуры, причем на внутренней поверхности теплоизоляционного слоя со стороны воздушного отверстия выполнены криволинейные канавки, кроме того, на одной части изоляционного слоя, разделенного плоским разъемом, касательная криволинейных канавок имеет направление по ходу движения часовой стрелки, а на второй части теплоизоляционного слоя касательная криволинейных канавок имеет направление против хода движения часовой стрелки, отличающаяся тем, что связи, соединяющие бетонные слои выполнены из биметалла, причем материал биметалла со стороны внутреннего воздуха многоэтажного здания имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала биметалла со стороны наружного воздуха.
www.findpatent.ru
Технология возведения многослойных монолитных наружных стен с теплоизоляционным слоем из бетона низкой теплопроводности
Распространенные в практике современного строительства технологии возведения ограждающих конструкций, такие как навесные системы с вентилируемым воздушным зазором, с отделкой тонкими штукатурными слоями, слоистые кладки, как правило, отличаются повышенной трудоемкостью, продолжительностью, предусматривают применение преимущественно ручного труда, что в совокупности приводит к увеличению сроков строительства и окупаемости инвестиций.
Кроме того, техническая сложность и повышенные требования к качеству производства работ и применяемых материалов могут привести к снижению срока службы фасада [2, 6]. Возведение наружных несущих стен в монолитном здании с использованием перечисленных технологических решений отличается производством работ в два основных этапа: возведение монолитного несущего слоя стены и устройство фасада, производимое после значительного технологического перерыва. Такая особенность актуальна, например, для торцевых стен монолитных зданий с поперечно-стеновой конструктивной схемой (рис. 1). При этом работы по возведению фасадов монолитных зданий как правило производятся отдельными специализированными бригадами, требуют дополнительных затрат на обеспечение защиты теплоизоляционных и отделочных материалов от атмосферных воздействий, установку лесов, подмостей, подъемных механизмов и т.д. Кроме того, следует отметить отсутствие полного спектра нормативно-технических документов, регламентирующих организационные и технологические особенности возведения современных навесных фасадных систем, требования к качеству производства работ, а также норм времени и стоимости производства работ [8].
Рис. 1. Возведение монолитного здания с торцевыми несущими наружными стенами
Одним из альтернативных конструктивно-технологических решений наружных стен в современном монолитном строительстве являются многослойные наружные стены, выполняемые из монолитного железобетона. При этом в теплоизоляционном слое используется легкий бетон низкой теплопроводности, являющийся перспективной альтернативой современным фасадным теплоизоляционным материалам [1, 7, 9].
Проведенное сравнение удельной трудоемкости возведения многослойной монолитной наружной стены с распространенными в монолитном строительстве технологическими решениями фасадных систем показало, что трудоемкость возведения разработанной конструкции не менее чем на 30% ниже, чем для аналогов [5].
Исследования технологии возведения проведены для разработанной конструкции, которая состоит из трех слоев – наружного, выполняющего декоративную и защитную функцию, теплоизоляционного, а также внутреннего конструкционного. Наружный слой выполняется из дисперсно-армированного стекловолокном мелкозернистого бетона; теплоизоляционный – из полистиролбетона, плотность, теплопроводность и толщина слоя которого варьируется согласно теплотехническому расчету применительно к различным климатическим районам строительства. Характеристики бетона и армирования внутреннего несущего слоя назначаются, исходя из требований проекта. Совместная работа наружного и внутреннего слоев конструкции обеспечивается за счет арматурных выпусков из плиты несъемной опалубки, соединяемых с выпусками из несущего слоя.
Особенностью возведения многослойной монолитной наружной стены на строительной площадке является последовательная вертикальная укладка нескольких бетонных слоев с различными прочностными и деформативными показателями в едином технологическом цикле. Для обеспечения возможности укладки теплоизоляционного и конструкционного бетонных слоев без значительного перерыва, на границе слоев используется металлическая сетка, крепящаяся к арматурному каркасу. Крепление сетки производится к П-образным хомутам из арматурной проволоки, расположенным с шагом, равным шагу рабочей арматуры каркаса таким образом, чтобы обеспечить требуемый защитный слой рабочей арматуры.
Одним из рациональных технологических решений представляется использование при изготовлении конструкции несъемной опалубки с наружной стороны стены и щитовой – с внутренней. Несъемная опалубка представляет собой щиты из фибробетона плотностью не более 1800 кг/м3. Щиты изготавливаются в заводских условиях в соответствии с проектным решением здания. При этом может быть использован окрашенный в массе фибробетон, либо применено отделочное покрытие, закладываемое в форму при изготовлении [4].
С внутренней стороны стены используются инвентарные щиты опалубки с металлической рамой и многослойной ламинированной фанерой в качестве палубы. Наружная несъемная опалубка разрабатывается с учетом возможности ее использования вместе с конкретной опалубочной системой. Так как обеспечение соответствия взаимного расположения швов щитов внутренней опалубки и наружных бетонных плит затруднено в связи с требованиями к архитектурной выразительности фасадов (обеспечению регулярности рисунка фасада), в наружных плитах устраиваются отверстия в местах пропускания стяжных штырей. При этом выравнивание наружных плит происходит за счет использования прогонов-стеновыравнивателей. После снятия внутренней опалубки отверстия для стяжных штырей в облицовочных плитах заделываются окрашенными в массе ремонтными составами.
Важной отличительной особенностью возведения многослойных наружных стен с применением в теплоизоляционном слое легких бетонов низкой теплопроводности является производство бетонных работ. С учетом того, что бетонная смесь на особо легких заполнителях используется в сравнительно небольших объемах, предусмотрено два альтернативных варианта – доставка бетонной смеси на строительный объект в автобетоносмесителе или ее приготовление непосредственно на строительной площадке. Подача бетонной смеси к месту укладки может осуществляться как бетононасосом, так и в бадье при помощи башенного крана, в зависимости от объемов работ и принятой организационной схемы. В случае подачи бетонных смесей бетононасосами, при приготовлении полистиролбетонной смеси на объекте используется пневматическая установка для приготовления и подачи легких бетонов, устанавливаемая на перекрытии в пределах радиуса ее действия. Подача приготовленной полистиролбетонной смеси осуществляется по гибким бетоноводам к месту укладки. Тяжелая бетонная смесь при этом подается посредством гидравлического бетононасоса с использованием бетонораздаточной стрелы. Подвижность бетонной смеси составляет 10-20 см (марки П3 и П4).
Последовательность укладки бетонной смеси имеет определяющее значение для обеспечения качества формирования как контактной зоны, так и конструкции в целом. Первоначально укладывается полистиролбетон на всю высоту конструкции с послойным уплотнением глубинным вибратором, после чего производится укладка тяжелой бетонной смеси конструкционного слоя. Последующий слой конструкции должен укладываться до начала схватывания предыдущего, этим обеспечивается монолитность связи слоев и исключаются дополнительные швы в сечении конструкции. Для обеспечения данного условия конструкция разделяется на технологически зоны таким образом, чтобы время укладки бетонной смеси в конструкционный слой в каждой зоне составляло не больше времени схватывания бетона в теплоизоляционном слое. Кроме того, проведенными ранее исследованиями установлено, что для обеспечения надежной связи слоев в многослойной бетонной конструкции временной интервал между их укладкой должен составлять 0,5–1,5 часа [3].
Последовательность возведения многослойной монолитной наружной стены представлена в таблице 1.
Таблица 1
Технологическая последовательность возведения монолитной многослойной конструкции с теплоизоляционным слоем из полистиролбетона
Вид работ |
Схема |
Технологические процессы |
Состав исполнителей |
изготовление арматурного каркаса |
- вязка арматурного каркаса из отдельных стержней; - закрепление металлической разделительной сетки; - подача арматурного каркаса к месту установки; - установка и временное закрепление арматурного каркаса |
арматурщики 4 разряда, 2 разряда; машинист 5 разряда | |
установка опалубки |
- установка плит несъемной опалубки с наружной стороны стены с временным закреплением; - установка щитов инвентарной опалубки с внутренней стороны стены; - соединение щитов опалубки стяжными штырями, выверка и закрепление; - установка подмостей |
опалубщики 3 разряда, 2 разряда; машинист 5 разряда | |
бетонирование конструкции |
- подача бетонной смеси теплоизоляционного слоя с укладкой и послойным уплотнением; - подача бетонной смеси конструкционного слоя с укладкой и послойным уплотнением;
|
бетонщики 4 разряда, 2 разряда; машинист 5 разряда | |
выдерживание и уход за бетоном |
|
|
бетонщик 2 разряда |
разборка опалубки |
- снятие подмостей; - откручивание крыльчатых гаек, снятие замков; - отсоединение щитов инвентарной опалубки от поверхности стены; - подача щитов опалубки краном к месту складирования; - заделка технологических отверстий |
опалубщики 3 разряда, 2 разряда; машинист 5 разряда |
Разработанная технология возведения в едином технологическом цикле многослойных наружных стен с использованием конструкционных бетонов, выполняющих несущие функции, и бетонов низкой теплопроводности, выполняющих теплоизоляционные функции, отличается следующими преимуществами:
- позволяет снизить трудоемкость производства работ по возведению наружных стен;
- позволяет исключить необходимость в дополнительных такелажных и подготовительных работах;
- не требует привлечения специализированных исполнителей, так как работы по возведению стены сводятся к арматурным, опалубочным и бетонным работам, которые могут быть выполнены теми же исполнителями, что и для монолитного каркаса здания;
- позволяет исключить временной перерыв между возведением несущего каркаса здания и наружных стен, так как монолитные наружные стены могут частично или полностью возводиться вместе с монолитным каркасом здания, что приводит к сокращению сроков строительства объекта;
- позволяет повысить долговечность наружных стен зданий, так как используемые материалы имеют срок службы, сопоставимый со сроком службы несущих конструкций, в отличие от навесных фасадных систем, требующих периодического ремонта за счет более низкой долговечности материалов и технической сложности конструкции.
Список литературы
1. Баженов Ю.М., Король Е.А., Ерофеев В.Т., Митина Е.А. Ограждающие конструкции с использованием бетонов низкой теплопроводности. Основы теории, методы расчета и технологическое проектирование. М: АСВ. 2008. 320 с.
2. Воробьев В.Н.Навесные фасадные системы: проблемы безопасности. Владивосток. 2012. 86 с.
3. Король Е.А., Пугач Е.М., Николаев А.Е. Экспериментальные исследования сцепления бетонов различной прочности в многослойных железобетонных элементах // Технологии бетонов. 2006. № 4. С. 54–55.
4. Король Е.А., Харькин Ю.А. Совершенствование технологии возведения энергоэффективных ограждающих конструкций в монолитном строительстве. Сборник докладов ХХ Российско-Польско-Словацкого семинара "Теоретические основы строительства". Жилина. 2011. C. 401–406.
5. Король Е.А., Харькин Ю.А. Технологическая и организационная эффективность возведения многослойных наружных стен в монолитном строительстве // Строительство и реконструкция. 2013. №6. C. 3–8.
6. Немова Д.В. Навесные вентилируемые фасады: обзор основных проблем. // Инженерно-строительный журнал. 2010. №5. С. 7–11.
7. Рахманов В.А. Энергосбережение в строительстве на основе применения инновационной технологии изготовления особо легких полистиролбетонов // Промышленное и гражданское строительство. 2011. №8. С. 61-62.
8. Яворский А.А., Киселев С.А. Актуальные задачи обеспечения надежности фасадных теплоизоляционно-отделочных систем // Вестник МГСУ. 2012. №12. С 78-84.
9. Ярмаковский В.Н., Семченков А.С. Конструкционные легкие бетоны новых модификаций – в ресурсоэнергосберегающих строительных системах зданий // Academia. Архитектура и строительство. 2010. № 3. С. 31–39.
References
1. Bazhenov Yu.M., Korol' E.A., Erofeev V.T., Mitina E.A. Ograzhdayushchie konstruktsii s ispol'zovaniem betonov nizkoy teploprovodnosti. Osnovy teorii, metody rascheta i tekhnologicheskoe proektirovanie. [Exterior walls using low thermal conductivity concrete. Fundamentals of the theory, calculation procedure and technological designing]. Moscow: ASV. 2008. 320 p.
2. Vorob'ev V.N. Navesnye fasadnye sistemy: problemy bezopasnosti. [Hinged facade systems: safety problems]. Vladivostok. 2012. 86 p.
3. Korol' E.A., Pugach E.M., Nikolaev A.E. Experimental research of different strength concrete connection in multilayer reinforced concrete elements. Tekhnologii betonov. 2006. No. 4. pp. 54–55. (In Russian).
4. Korol' E.A., Khar'kin Yu.A. Improvement of construction technology of energy effective exterior walls in monolithic construction. Sbornik dokladov XX Rossiysko-Pol'sko-Slovatskogo seminara "Teoreticheskie osnovy stroitel'stva". Zhilina. 2011. pp. 401–406. (In Russian).
5. Korol' E.A., Khar'kin Yu.A. Technological and organizational efficiency of multilayer exterior walls construction in monolithic building. Stroitel'stvo i rekonstruktsiya. 2013. No 6. pp. 3–8. (In Russian).
6. Nemova D.V. Hinged ventilated facades: review of the main problems. Inzhenerno-stroitel'nyy zhurnal. 2010. No 5. pp. 7–11. (In Russian).
7. Rakhmanov V.A. Energy saving in construction on the basis of application of innovative manufacturing technology of especially light polystyrene concretes. Promyshlennoe i grazhdanskoe stroitel'stvo. 2011. No 8. pp. 61-62. (In Russian).
8. Yavorskiy A.A., Kiselev S.A. Relevant Objectives of Assurance of Reliability of Façade Systems Serving Thermal Insulation and Finishing Purposes. Vestnik MGSU. 2012. No. 12. pp. 78–84. (In Russian).
9. Yarmakovskiy V.N., Semchenkov A.S. New modifications of lightweight structural concrete – in resources and energy saving construction systems of buildings. Academia. Arkhitektura i stroitel'stvo. 2010. No. 3. pp. 31–39. (In Russian).
www.ktbbeton.com
Наружная самонесущая стена монолитного жилого дома
Изобретение относится к области строительства и может быть использовано при проектировании и возведении монолитных жилых домов. Технический результат: упрощение технологии возведения наружной стены и сохранение общей площади жилого дома. Наружная самонесущая стена монолитного жилого дома включает простенки, верхнюю и нижнюю перемычки оконного проема, выполненные из легкого монолитного бетона, армированные пространственным каркасом, причем внутри простенков имеются вертикальные воздушные каналы, разделенные по высоте на один этаж на уровне перекрытия частью плитного утеплителя, заложенного в тело верхней и нижней перемычек оконного проема. 3 ил.
Изобретение относится к области строительства и может быть использовано при проектировании и возведении монолитных жилых домов.
Известна наружная самонесущая стена монолитного жилого дома, включающая простенки, верхнюю и нижнюю перемычки оконного проема, выполненные из монолитного легкого бетона, армированные пространственным каркасом (см. ”Проект 18-ти этажного монолитного жилого дома”, разработанного институтом “Чувашгражданпроект” и утвержденного Советом министров Чувашской АССР, заказ 318.0/86 №30/86). В связи с ужесточившимися требованиями СниПа 11-3-79 “Строительная теплотехника” к внутренней поверхности стены крепится слой пенопласта и защищается кладкой из легкобетонных камней.
Приведенный аналог по технической сущности оказывается наиболее близким к заявленному изобретению и принимается за прототип.
Недостатком прототипа является сложность выполнения конструктивного решения стены и уменьшение общей площади жилого дома.
Технический результат - упрощение технологии возведения наружной стены и сохранение общей площади жилого дома.
Указанный технический результат достигается тем, что внутри простенков содержатся вертикальные воздушные каналы, разделенные по высоте на один этаж на уровне перекрытия частью плитного утеплителя, заложенного в тело верхней и нижней перемычек оконного проема.
Сущность изобретения поясняется графическими материалами, на которых изображено:
- на фиг.1 - фрагмент фасада наружной стены;
- на фиг.2 - сечение простенка;
- на фиг.3 - сечение перемычки.
Наружная самонесущая стена монолитного жилого дома включает простенки 1, верхнюю 2 и нижнюю 3 перемычки оконного проема, выполненные из монолитного легкого бетона и армированные пространственным каркасом 4. Внутри простенков имеются вертикальные воздушные каналы 5. В теле верхней 2 и нижней 3 перемычек оконного проема заложены вкладыши плитного утеплителя 6, закрепленные внутри пространственного арматурного каркаса. По СНиП 11-3-79 “Строительная теплотехника” воздушные каналы учитываются как воздушная прослойка в ограждающей конструкции при длине каналов до 6 метров и каналы должны быть заглушены по торцам. Поэтому воздушные каналы 5 простенков 1 разделяются по высоте на один этаж на уровне перекрытия частью плитного утеплителя, заложенного в тело нижней перемычки оконного проема 3. Применение воздушных каналов вызвано невозможностью укладки в тело простенка плитного утеплителя из-за сложностей укладки и качественного уплотнения бетона в зазорах между поверхностями плитного утеплителя и бортоснастки. Верхняя 2 и нижняя 3 перемычки самонесущей стены объединены монолитным бетоном в единый элемент стены.
Бетонирование наружной самонесущей стены монолитного жилого дома осуществляется по следующей технологии. На смонтированное перекрытие нижележащего этажа, опирающееся на внутренние несущие перегородки, устанавливают металлическую бортоснастку, монтируется пространственный каркас с закрепленными внутри вкладышами плитного утеплителя. С перекрытия бортоснастки на участках простенков опускаются групповые виброблоки, служащие пустотообразователями (например, глубинный вибратор по патенту РФ №2076189, кл. Е 04 G 21/08, В 28 В 1/093 от 27.03.1997), подается бетонная смесь умеренной пластичности, при непрерывной работе виброблока происходит уплотнение бетона. За счет отсоса воды из бетонной смеси пористым заполнителем обеспечивается создание структурной прочности, что позволяет извлечь виброблок из простенка.
Наружная самонесущая стена монолитного жилого дома, включающая простенки, верхнюю и нижнюю перемычки оконного проема, выполненные из легкого монолитного бетона, армированные пространственным каркасом, отличающаяся тем, что внутри простенков имеются вертикальные воздушные каналы, разделенные по высоте на один этаж на уровне перекрытия частью плитного утеплителя, заложенного в тело верхней и нижней перемычек оконного проема.
www.findpatent.ru
Способ возведения наружных стен здания
Изобретение относится к строительству и может быть использовано при возведении монолитных стен из керамзитобетона. Способ возведения наружных стен здания включает установку многослойных строительных блоков из керамзитобетона на фундамент по периметру. Блоки устанавливают горизонтально или вертикально на строительный кладочный раствор в виде столбиков и нивелируют по вертикали, после набора необходимой прочности строительного раствора к многослойным строительным блокам при помощи шурупов-саморезов с наружной и внутренней стороны прикручивается съемная или несъемная опалубка в виде щитов или плитных элементов фасада, затем замоноличивают межопалубочное пространство стены капсулированным керамзитобетоном, связывают многослойные блоки с замоноличенной частью стены путем армирующих кладочных сеток, установленных в горизонтальных швах между строительными блоками, при этом строительные блоки склеиваются с монолитной частью стены за счет имеющихся впадин на соприкасающихся поверхностях. Технический результат-упрощение технологии возведения наружных стен здания, снижение её себестоимости за счет минимального расхода материала. 1 з.п. ф-лы, 1 ил.
Известен способ возведения наружной стены монолитно-каркасного здания, защищенный патентом RU С2 2193635, Е04В 2/84, Е04В 1/16, опубл. 27.11.2002.
Известный способ состоит в том, что многослойную конструкцию стены формируют изнутри возводимого здания, для чего сначала закрепляют на перекрытии фасадную плиту, затем на ее внутренней поверхности закрепляют слой утеплителя, после чего устанавливают арматурный каркас и внутреннюю опалубку, осуществляют заливку бетона и после затвердевания бетона внутреннюю опалубку удаляют. Заделку стыков между плитами также осуществляют изнутри здания. Фасадная плита имеет декоративную наружную поверхность, и в ее тело со стороны внутренней поверхности вмонтировано четыре анкерных элемента, по одному в каждой угловой зоне, два расположенных вдоль нижней кромки плиты имеют форму стержней и два - вдоль верхней кромки, представляют собой П-образные фермы с нисходящим раскосом, при этом высота анкерных элементов по существу равна суммарной толщине слоев многослойной стены, следующих за фасадной плитой.
В описанном способе многослойная конструкция, сформированная этим способом, является достаточно тяжелой, не обеспечивает необходимой тепло-, влаго-, звукоизоляции, требует внутренней первоначальной отделки.
Наиболее близким по технической сущности является способ возведения наружной стены монолитного здания (патент RU 2336395, Е04В 2/84, опубл. 20.10.2008), включающий установку многослойных стеновых панелей изнутри возводимого здания, отличающийся тем, что изготовление многослойных стеновых панелей способом по пп.6-10 осуществляют на строительной площадке в специальных формах, снабженных колесами, транспортируют готовые многослойные стеновые панели на формах, снабженных колесами, к месту установки, вынимают из формы, снимают опалубные перегородки, устанавливают многослойные стеновые панели на фундамент по периметру, закрепляют многослойные стеновые панели между собой путем перевязки металлических стержней, выступающих из них сбоку, укладывают в ПВХ трубы и в полости металлические стержни, заливают арматуру бетоном малыми порциями, периодически утрамбовывая, устанавливают плиты перекрытия, стыкуют коммуникации, устанавливают окна и двери.
Недостатком известного способа является трудоемкость способа возведения наружной стены монолитного здания.
Задачей предлагаемого способа является улучшение эксплуатационных и экологических свойств наружных стен здания.
Технический результат заключается в упрощении технологии возведения наружных стен здания и снижение ее себестоимости за счет минимального расхода материала.
Технический результат достигается тем, что способ возведения наружных стен здания, включающий установку многослойных строительных блоков из керамзитобетона на фундамент по периметру, при этом блоки раскладывают горизонтально или вертикально на строительный кладочный раствор в виде столбиков и нивелируют по вертикали, после набора необходимой прочности строительного раствора к многослойным строительным блокам при помощи шурупов-саморезов с наружной и внутренней стороны прикручивается съемная или несъемная опалубка в виде щитов или плитных элементов фасада, затем замоноличивают межопалубочное пространство стены капсулированным керамзитобетоном, связывают многослойные блоки с замоноличенной частью стены путем армирующих кладочных сеток, установленных в горизонтальных швах между строительными блоками, при этом строительные блоки склеиваются с монолитной частью стены за счет имеющихся впадин на соприкасающихся поверхностях. Замоноличивают межопалубочное пространство стены керамзитовыми гранулами крупных фракций 5-10 мм или 10-20 мм.
На чертеже приведена схема наружной стены монолитно-каркасного здания:
1 - многослойные блоки;
2 - шурупы-саморезы;
3 - несьемная опалубка;
4 - съемная опалубка;
5 - капсулированный керамзит;
6 - анкера.
Способ возведения наружных стен здания заключается в следующем.
Предварительно изготавливают многослойные строительные блоки из керамзитобетона. Изготовление многослойного строительного блока включает капсулирование заполнителя с вяжущим веществом, подачу капсул в форму с последующим отвердением, перед засыпкой заполнителя, например керамзита, производят его последовательный рассев на фракции 0,8-3 мм, 1-5 мм, 5-10 мм, 8-12 мм, 10-16 мм, приготавливают цементно-клеевой состав, состоящий из цемента, ПВА и воды или цемента, суперпластификатора, порошка латекса и воды, затем смешивают заполнитель с цементно-клеевым составом, при этом укладку заполнителя производят послойно по фракциям, для нижнего и верхнего слоя используют мелкие фракции заполнителя 0,8-3 мм или 1-5 мм, для среднего слоя используют заполнитель более крупной фракции 5-10 мм, или 8-12 мм, или 10-16 мм, причем нижний и верхний слои могут быть выполнены с декоративной отделкой, а укладку слоев производят последовательно и непрерывно, уложенные в форму слои предохраняют от потери тепла теплоизоляционным материалом (патент RU №2401367, опубл. 10.10.2010).
Возведение стены начинается с раскладки многослойных строительных блоков 1 по периметру стен здания, причем толщина возводимой стены здания равна проектной толщине многослойного блока. Блоки могут раскладываться как горизонтально, так и вертикально. Блоки укладывают на строительный кладочный раствор в виде столбиков и нивелируют по вертикале.
После набора необходимой прочности строительного раствора к многослойным строительным блокам при помощи шурупов-саморезов 2 с наружной и внутренней стороны стены прикручивается несъемная 3 или съемная 4 опалубка в виде щитов или плитных элементов фасада.
После установки опалубки производится замоноличивание межопалубочного пространства стены капсулированным керамзитом 5. Для связи многослойных блоков с замоноличеной частью стены предусмотрено дополнительно устройство известных армирующих кладочных сеток. Основная связь многослойных строительных блоков происходит при склеивании блоков с монолитной частью стены за счет имеющихся впадин на соприкасающейся поверхности блока и монолитной частью стены. Хорошее заполнение монолитной части стены происходит за счет высокой катучести керамзитовых гранул. Замоноличивание не требует вибрации. Несъемная опалубка обеспечивает сразу технические и эксплуатационные свойства стены. Связь несъемной опалубки с монолитной частью стены обеспечивается через анкерующие 6 устройства, предусматриваемые при изготовлении несъемной опалубки.
После съема съемной опалубки, производится оштукатуривание стен известными штукатурными составами, обеспечивающими стену всеми необходимыми эксплуатационными свойствами.
Внутренний и наружные слои многослойного строительного блока выполнены из мелких фракций керамзита 1-5 мм и обладают хорошей гвоздимостью и способностью хорошего и надежного крепления опалубки.
Между многослойными строительными блоками производится замоноличивание стены методом капсуляции керамзитовых гранул более крупных фракций 5-10 мм или 10-20 мм. Многослойные блоки устанавливаются в виде столбиков на цементно-песчаный раствор с нивелированием по вертикали при помощи любого известного инструмента. Для более надежного сцепления многослойного блока с монолитным участком стены в горизонтальных швах между блоками предусмотрена укладка кладочной металлической или стеклопластиковой сетки.
В качестве опалубки замоноличивания может быть использована несъемная опалубка в виде влагостойкого гипсокартона с внутренней стороны и плиты из фасадного искусственного камня с наружной стороны.
Набор прочности монолитной части стены происходит при температуре более +10 градусов по Цельсию в течение суток. При отрицательной температуре требуется защита и прогрев капсулированного бетона до набора прочности.
После набора прочности монолитных участков производится съем опалубки и оштукатуривание стен с наружной и внутренней стороны известными штукатурными составами, обладающими необходимыми эксплуатационными свойствами. Эксплуатационные характеристики стены будут идентичны свойствам многослойного строительного блока.
Высокая экологическая чистота наружных стен здания достигается за счет использования экологически чистого природного сырья и малого расхода цементной составляющей, что обуславливает его высокие теплофизические, конструктивные и эксплуатационные свойства. Расход цемента на 1 м2 не более 120 кг.
1. Способ возведения наружных стен здания, включающий установку многослойных строительных блоков из керамзитобетона на фундамент по периметру, отличающийся тем, что блоки устанавливают горизонтально или вертикально на строительный кладочный раствор в виде столбиков и нивелируют по вертикали, после набора необходимой прочности строительного раствора к многослойным строительным блокам при помощи шурупов-саморезов с наружной и внутренней стороны прикручивается съемная или несъемная опалубка в виде щитов или плитных элементов фасада, затем замоноличивают межопалубочное пространство стены капсулированным керамзитобетоном, связывают многослойные блоки с замоноличенной частью стены путем армирующих кладочных сеток, установленных в горизонтальных швах между строительными блоками, при этом строительные блоки склеиваются с монолитной частью стены за счет имеющихся впадин на соприкасающихся поверхностях.
2. Способ по п.1, отличающийся тем, что замоноличивают межопалубочное пространство стены керамзитовыми гранулами крупных фракций 5-10 мм или 10-20 мм.
www.findpatent.ru