Справочник химика 21. В бетон соль
Влияние противогололедного реагента на бетон и строительные конструкции Какое воздействие оказывают обычные противогололедные реагенты на бетонные поверхности? Хорошо известно, что противогололедные реагенты, содержащие нитрат аммония и/или сульфат аммония оказывают химическое воздействие на бетон. Однако такие противогололедные реагенты, как хлористый натрий (каменная соль), хлористый кальций, мочевина, хлористый калий, и их комбинации не оказывают химического воздействия на бетон. Однако эти противогололедные реагенты понижают точку замерзания воды. Обычно это действие увеличивает количество циклов замерзания/оттаивания, которые проходит вода, что, в свою очередь, может увеличить возможность растрескивания бетона. Каждый раз, когда вода замерзает в бетоне, она увеличивается в объеме на 9%. Возникающее в результате этого гидравлическое давление может превысить размеры прочности бетона, вызывая тем самым коррозию и/или растрескивание. Чем больше циклов замерзания/таяния воды в бетоне, тем больше вероятность повреждения бетона. Независимая лаборатория, по контракту с компанией The Dow Chemical Company, провела испытания восьми наиболее распространенных в розничной продаже противогололедных реагентов: гранул хлористого кальция Peladow, чешуированный хлористый магний, каменную соль (хлористый натрий), Ice Fighting Plus хлористый калий, противогололедный реагент Safe step, противогололедный реагент Superior Sno-N-Ice Melter, и мочевины. Основной химический состав каждого противогололедного реагента: Peladow Premier противогололедный реагент – хлористый кальций Чешуированный хлористый магний – хлористый магний Каменная соль – хлористый натрий Ice Fighter Plus противогололедный реагент - хлористый натрий Хлористый калий – хлористый калий Safe Step противогололедный реагент – смесь хлористого натрия и хлористого калия Superior Sno-N-Ice Melter противогололедный реагент – хлористый натрий Мочевина – мочевина В лаборатории 70 кусочков цемента с размерами 30,48x7,62x7,62 см вдоль бортика высотой 1,91 см на каждом образце. Из этих 70 кусочков 66 были использованы при проведении испытаний, а оставшиеся 4 не были. Время воздействия на бетон составило 14 дней при температуре 24,4°С и относительной влажности 50%. I. Материал, использованный для испытаний
II. Свойства бетона
III. Оборудование, использованное для проведения испытаний по замораживанию/таянию Камера с размерами 3,05*3,36*2,75 м, разделенная на две секции; в одной секции (холодная сторона) поддерживалась температура –17,7°С при помощи механического охлаждения и введения жидкого азота, в другой секции (теплая сторона) поддерживалась температура +21,1°С при помощи электрических нагревателей. Образцы были помещены на большую поддерживающую систему, которая механически передвигалась от холодной стороны к теплой при помощи роликовой системы. IV. Процедура испытанийИспытания проводились в соответствии со стандартом ASTM С-672-76, «Тест на сопротивление растрескиванию бетонных поверхностей при воздействии противогололедных химикатов», за исключением пункта 2.1 – время цикла замерзания/таяния. Время замерзания/таяния было изменено от 24 часов на цикл на 8 часов на цикл. Чтобы иметь уверенность, что температура опускалась ниже 0°С и поднималась выше 0°С, в центр двух контрольных образцов были помещены термоэлементы. Каждый противогололедный химикат был разбавлен до концентрации 2% , 4%, 8% и 16% и затем помещен на глубину 12,7 мм на два образца бетона с размерами 30,48x7,62x7,62 см для каждой из четырех концентраций, всего 64 образца для испытаний. Два контрольных образца были покрыты только водопроводной водой, что в сумме дало 66 образцов. Циклы для всех образцов начинались с холодной стороны камеры в течение 4 часов, за это время температура центра контрольных образцов достигла –3,8°С. Все растворы замерзли, кроме 16%-ных, которые приняли форму талого снега. Затем образцы передвинули к теплой стороне на 4 часа, после чего температура центра контрольных образцов достигла 7,2°С. Все растворы приняли жидкую форму (полностью растаяли). Это рассматривалось как один цикл. Все 66 образцов были подвергнуты циклам с приращение 50, всего 500 циклов. После каждого 50-го цикла все образцы промывались чистой водой для устранения оставшихся частиц реагентов, чтобы удостовериться, что концентрация противогололедного реагента является постоянной на протяжении всего теста с 500 циклами. Образцы были также взвешены, и результаты записывались после каждого 50-го цикла перед добавлением свежего раствора противогололедных реагентов. Испытание было прервано после 350 циклов замерзания/таяния на 24 дня согласно предварительному блокированию камеры испытаний. В течение этого времени все образцы находились в морозильной камере при температуре -22°С. Этот период прерывания теста вытекает из процедур, описанных в стандарте ASTM С-672, пункт 7.3. V. Дополнительные тестыНеобработанный элемент, Vanport Stone, был проверен в соответствии со стандартом ASTM С-289, «Потенциальная химактивность элементов», (химический метод), и было установлено, что он потенциально не активен, в соответствии с приложением X.1.1.2.2. стандарта ASTM С-33. Был проведен также тест на затвердевшем бетоне «Микроскопическое определение вакуумного содержания и параметров вакуумной системы в затвердевшем бетоне», стандарт ASTM С-457. После завершения 500 циклов замерзания/таяния поверхность каждого образца была проверена, и размеры растрескивания были выражены в цифрах по следующей системе: 0 = нет растрескивания 1 = незначительное растрескивание 2 = от незначительного до умеренного растрескивания 3 = умеренное растрескивание 4 = от умеренного до сильного 5 = сильное растрескивание Классы были установлены по наблюдению и размерам растрескивания. Небольшое растрескивание = от 1,59 мм до 4,76 мм в диаметре Большое растрескивание = от 4,76 мм до 9,53мм в диаметре Очень большое растрескивание = больше 9 ,53 мм в диаметре Некоторые данные были представлены в процентном выражении из-за большого объема растрескивания. Поверхности всех образцов бетона были осмотрены на предмет наличия растрескивания и классифицированы, как показано выше. Для удобства цифры с символами «меньше чем» (<) расположили посередине между цифрами. Например, «<2» находилось бы где-то между 1 и 2, или 1.5. Общий средний класс для каждого противогололедного реагента представлен в Таблице 1, «Классы растрескивания после 500 циклов замерзания/таяния». Результаты показали, что все образцы, обработанные 2% концентрациями, кроме каменной соли, показали наибольший уровень растрескивания. Образцы каменной соли при 4% концентрации показали немного большее растрескивание, чем 2% раствор. Два контрольных образца, обрабатывавшиеся водопроводной водой после каждого 50 цикла, в конце испытаний получили уровень растрескивания, равный уровню для хлористого кальция и хлористого натрия при 2% концентрации. Таблица 1 – Уровни растрескивания после 500 циклов
Испытания показали, что большинство противогололедных реагентов не оказывают химического воздействия на бетон. Скорее растрескивание бетона относится к количеству циклов замерзания /таяния, через которые бетон проходит в течение зимних месяцев. Испытания и опыт показывают, что бетон хорошего качества, с вовлечением воздуха, устойчив к растрескиванию. Вовлечение воздуха в высококачественный бетон создает миллиарды «пропускных клапанов» для бетона при воздействии низких температур. Эти пропускные клапаны предотвращают наращивание давления в бетоне, когда влага замерзает и расширяется. Именно расширение замерзшей воды и последующее наращивание давления становятся причиной растрескивания бетона. |
www.evroles-msk.narod.ru
Бетоны растворах солей - Справочник химика 21
Использование для этого кислот, щелочей, растворов солей, органических соединений приводит к разрушению от коррозии строительных конструкций и оборудования, выполняемых преимущественно из стали, цветных металлов, бетона и железобетона. Прямые безвозвратные потери металла составляют 10... 12 % общего объема производства стали. [c.3] Ко второму виду относится коррозия, связанная с воздействием вод, в которьгх растворены химические соединения, вступающие в обменные реакции с массой бетона. Образовавшиеся при этом соединения оказываются либо хорошо растворимы в воде и вымываются ею, либо не обладают вяжущими свойствами и в виде аморфной массы остаются в зоне реакции. К этому типу коррозии относится также коррозия бетона в кислотах и растворах солей. [c.104]Полиэфирные замазки — продукт смешения полиэфирных олигомеров, отвердителей, минерального наполнителя и коллоидного кремнезема. Часто вместо минерального наполнителя используется угольный. Продолжительность затвердевания при комнатной температуре — 3 часа. Отвердевшие замазки являются кислотоупорными материалами, имеют хорошую сцеп-ляемость с бетоном и керамикой. Полиэфирные замазки обладают высокой стойкостью в воде, растворах солей, неорганических кислот при комнатной температуре, бензине, минеральных маслах. Стойкость замазок в щелочах и ароматических углеводородах невысока. Полиэфирные замазки не пригодны для работы в жидких средах при температуре выше 30 °С. [c.107]
Лаки на основе хлорированного каучука благодаря хорошему сцеплению с древесиной, кирпичом, бетоном и металлами применяют для защиты поверхностей от воздействия кислот, щелочей, растворов солей, хлора и сернистого газа. [c.25]
При попеременном замораживании и оттаивании особенно резко падает прочность пористых бетонов. Кроме того, вода при миграции в порах переносит растворы солей, увеличение объема которых при кристаллизации также приводит к некоторому снижению прочности. [c.168]
Ко второму виду коррозии следует отнести процессы, развивающиеся в бетоне при действии вод, содержащих химические соединения, которые вступают в обменные реакции с компонентами отвердевшего замеса цементной смеси. Новые химические соединения либо хорошо растворимы в воде и вымываются ею, либо не обладают вяжущими свойствами и в виде аморфной массы остаются в зоне протекания реакции. Сюда относятся процессы, происходящие под действием на бетон кислот и растворов солей. [c.249]
К третьему виду относятся процессы, в результате которых в порах и капиллярах бетона происходит накопление кристаллических новообразований. По достижении критической степени заполнения порового пространства в толще бетона возникают внутренние напряжения, которые могут привести к его разрушению. Накопление кристаллических продуктов в порах бетона может происходить либо в результате химического взаимодействия агрессивной среды с цементным камнем, при котором в осадок выпадают труднорастворимые вещества, либо при циклическом воздействии растворов минеральных солей, когда насыщение бетона раствором чередуется с высушиванием. [c.121]
Затвердевшая эпоксидная замазка обнаруживает очень хорошую стойкость при действии разбавленных и концентрированных растворов щелочей при обычной и повышенной температурах, хорошую стойкость в воде,- растворах солей и кислот (не концентрированных) при температуре 20 °С. Она имеет хорошее сцепление с бетоном и керамикой, высокую механическую прочность, минимальную линейную усадку и незначительное влагопоглощение. [c.274]
Отвердевшие замазки — кислотостойкие материалы, хорошо сцепляются с бетоном и керамикой, имеющими высокую механическую прочность и незначительное водопоглощение. Они обнаруживают высокую стойкость при воздействии коррозионных сред, в частности, воды, растворов солей, неорганических кислот при комнатной температуре (особенно — разбавленных, например, 5 и 20%-ных серной, соляной и хромовой кислот, 5%-ной азотной кислоты), а также бензина и минеральных масел. Стойкость замазок в щелочных средах недостаточно велика. Аналогично они ведут себя при действии бензола. [c.275]
Образцы бетонов, импрегнированных полимерами, характеризуются также пониженной проницаемостью для растворов солей. Например, проницаемость строительного состава, содержащего полиметилметакрилат, примерно в 10 раз меньше проницаемости [c.299]
Каждая ванна покрыта резиновой футеровкой (гуммирована) и смонтирована на бетонных опорах, поддерживаемых подвижными фарфоровыми изоляторами. Верх каждой ванны закрывается плоской гуммированной покровной пластиной, через которую проходит медная шина — анод, питающийся постоянным током, напряжение которого механическими контактными выпрямителями снижено с 11 ООО до 3,5 в. Медная шина поддерживает аноды, изготовленные из рифленого графита, подвешенного на изолированных графитовых стержнях. На дне электролизера, имеющем небольшой наклон, тонкий слой ртути образует катод. Получающаяся в течение процесса амальгама натрия с помощью слива на конце электролизера отделяется от раствора соли и поступает в разлагатель. После разложения амальгамы вертикальный насос возвращает ртуть в электролизер. Газообразный хлор (чистота которого не меньше 98%) выводится через отверстие на аноде и переходит в трубопровод. Разбавленный солевой раствор, насыщенный хлором, стекает в установку для дехлорирования, состоящую из пористых плит, через которые пропускается ток воздуха. Выходящий воздух содержит около 1% хлора, который поглощается известковым молоком. Дегазированный разбавленный солевой раствор снова насыщается солью перед новым поступлением на электролиз. [c.72]
Армируя бетон стеклянным волокном, получают стеклобетон, используемый в строительстве судов, понтонов. Бетон, получаемый из минерального вяжущего вещества (цементы, гипс и другие), полимера (натуральный и синтетические каучуки, битумы, поливинилхлорид и другие) и наполнителей, называют полимер-бетонами. Они устойчивы к кислотам, щелочам, растворам солей и газам. Их применяют для покрытия полов в химических производствах, изготовления армированных конструкций, гидроизоляции, при строительстве бетонных дорог, перронов и т. д. [c.83]
Флюатирование — весьма дорогая операция, однако эффект от его осуществления сохраняется гораздо дольше, чем в случае силикатизации. Оно применяется для стабилизации и уплотнения поверхности конструкций из горных пород и бетона. Чтобы получить для заполнения пор стойкие в атмосферной среде соединения, бетоны и горные породы, в состав которых не входит карбонат кальция, необходимо предварительно пропитать хлоридом кальция. Только после этого используются ф л ю а т ы. Флю-атами называются водные растворы солей кремнефтористоводородной кислоты (чаще всего применяются цинковая ZnSiFe-GHaO и магниевая MgSiFe соли). Водные растворы этих солей имеют кислую реакцию. Они вызывают коррозию металла и стекла, являются токсичными веществами. [c.280]
Агрессивными средами, вызывающими интенсивную коррозию металла и бетона на химических предприятиях, являются различные минеральные и органические кислоты, щелочи, растворы солей и другие химические продукты при нормальной и повышенной температурах, а также различные агрессивные газы и пары — хлористый водород, сернистый газ, серный ангидрид, окислы азота и др. [c.96]
На бетон агрессивно воздействуют и водные растворы различных минеральных и органических солей. Степень агрессивности этих солей по отношению к бетону зависит от химического состава вяжущего вещества и заполнителей бетона. Кислые соли разрушают бетон вследствие содержания в нем свободной извести. [c.49]
Стационарные хранилища больших ёмкостей для кислот, растворов солей и т. д. часто изготовляются из углеродистых сталей, дерева или бетона с внутренней облицовкой их тонкой листовой нержавеющей сталью (фиг. 29 и 30). [c.32]
Разновидностью электрохимической коррозии является почвенная коррозия, которой подвергаются магистральные трубопроводы, оболочки кабелей и другие-металлические конструкции, полностью или частично находящиеся под землей. Коррозия в этом случае возникает в результате воздействия влажной почвы на металл. Почвенная вода является электролитом, так как в ней растворены соли, кислоты и щелочи. К почвенной коррозии относится коррозия металлов в цементе, бетоне и других плотных массах, способных удерживать воду. [c.6]
Химическая устойчивость кислотоупорного бетона изучена по отношению к серной, азотной, соляной, фосфорной, уксусной, сернистой и хромовой кислотам, некоторым растворам солей и к большинству агрессивных газов. [c.236]
Кислотоупорный бетон нестоек по отношению к плавиковой кислоте, к щелочам, к растворам солей с щелочной реакцией и к некоторым жирным кислотам. [c.236]
Полиэфирные покрытия, армированные стекловолокном, требуют сухой, нейтрализованной (например, при помощи флюатирования) бетонной основы. При 20 °С они обнаруживают хорошую химическую стойкость в воде, разбавленных и среднеконцентрированных растворах неорганических и органических кислот, растворах солей, имеющих кислую или щелочную реакцию, бензине и минеральных маслах. С ростом температуры агрессивных сред химическая стойкость покрытий уменьшается. [c.276]
Защита бетоном стальной арматуры основывается на пассивирующем действии щелочных сред. Выше приводилась диаграмма (см. рис. 2), иллюстрирующая зависимость устойчивости железа в водных растворах от pH. Скорость коррозии железа в нейтральных, слабокислых и слабощелочных растворах не зависит от величины pH. Это происходит потому, что в указанной области концентраций водородных ионов скорость коррозии определяется доступом кислорода. Она зависит также (на этом участке кривой) от присутствующих в растворе солей и их концентрации, наличия окислителей, температуры и многих других факторов. [c.13]
Коррозия 2-го вида. Если на бетон действуют воды, содержащие некоторые химические вещества, то в результате коррозии в бетоне образуются соли, которые легко растворяются и уносятся водой, либо выделяются в бетоне в виде аморфной массы, не обладающей вяжущими свойствами. Коррозийные разрушения этого вида происходят при эксплуатации бетонных и железобетонных конструкций в цехах с агрессивными средами, главным образом в химической промышленности. [c.52]
Влиянию пониженных температур —попеременному замораживанию и оттаиванию — подвергаются практически все открытые сооружения, служащие в условиях атмосферного воздействия. Особенно опасная ситуация возникает, когда воздействуют одновременно низкая температура и растворы солей, например при работе бетона в морских сооружениях. Суть действия пониженной температуры в бетоне заключается, в возникновении деформации расширения замерзающей воды в опасных порах, которая может привести к оазрушению. Возникают но меньшей мере два источника разрушающих сил первый — увеличение объема воды при замерзании - 9%), что ведет к возникновению большого гидравлического давления иа стенки пор и капилляров, второй — осмотическое давление, возникающее благодаря локальному увеличению концентрации раствора из-за отделения замерзающей воды от раствора. По мнению некоторых исследователей, величина осмотического давления может достигать 1—2 МПа. Многократные теплосмены постепенно расшатывают структуру цементного камня и бетона, снижают его прочность и в момент, когда давление расширения превышает предел прочности при растяжений, бетон разрушается. Как показано Б. Г. Скрамтаевым, В,- М. Москвиным7 В. В. Стольниковым и С. Д. Мироновым, основную роль в разрушении при действии низких температур играют как общая пористость, так и характер капиллярно-пористой структуры материала — в искусственном камне имеются поры, наиболее опасные и ответственные за развитие разрушения материала. Практически не опасны, например, - очень мелкие поры геля, поскольку вода в них замерзает толы о при температуре ниже 193 К. Поскольку морозостойкость искусственного камня зависит от характера и величины общей пористости, то е снижением можно добиться существенного повышения морозостойкости. Общую пористость можно уменьшить снижением В/Ц, использованием цемента с пониженной водопотребностью, а также введением разных типов добавок — пластифицирующих, гидрофобизирующих, воздухововлекающих. [c.369]
Коррозия 3-го вида. Коррозия этого вида протекает при действии на поверхность бетонных конструкций растворов солей серной кислоты. В результате взаимодействия этих растворов е составными частями бетона образуются продукты коррозии, которые отлагаются в порах, трещинах и капиллярах бетона, кристаллизуются в них, увеличиваются при этом в объеме и вызывают разрушение бетона. [c.52]
Стойкость бетона при действии на него водных солевых растворов зависит от характера и концентраций растворов солей, от химического состава цемента и заполнителей бетона, а также от плотности бетона. Растворы кислых солей разрушают бетон, содержащий значительное количество свободной извести. [c.52]
КОНЦЕНТРАТЫ СУЛЬФИТНО-СНИР-ТОВОЙ БАРДЫ (сульфитно-бардяные) — техническое название кальциевых солей лигносульфоновых кислот, образующихся при сульфитной варке целлюлозы и переходящих вместе с нецеллюлозными углеводными компонентами древесины в раствор сульфитного пгело-ка. К. с.-с. б.— малогидратированные лиофильные коллоиды, сильные поверхностно-активные вещества, легко вступающие в реакции замещения катионов и т. п. К. с.- с. б. применяют для разжижения сырьевого шлама цементных и бетонных растворов, в производстве силикатных, абразивных, фарфоро-фаянсовых изделий, для стабилизации суспензий и эмульсий, в качестве вяжущего и дубящего средства, для получения ванилина, протокатеховой кислоты и др. В СССР выпускают КБР — жидкие (50% сухих веществ), КБТ — твердые (76% сухих веществ), КБП — порошкообразные (87% сухих веществ). [c.134]
Минеральные вяжущие представляют собой весьма обширную группу неорганических соединений, способных твердеть при затворе-НИИ водой или водными растворами солей, кислот и оснований. На основе минеральных вяжущих получают мастики (замазки), растворы и бетоны, отличающиеся крупностью наполнителя. Химическая стойкость таких материалов в основном определяется стойкостью отвержденного вяжущего. Бетоны на основе портландцемента при принятии специальных мер по их уплотнению являются щелочестойкими, но разрушаются в кислотах. Щелочеотойкие бетоны рекомендз ется выполнять на основе алитового портландцемента, карбонатного песка и щебня при водоцементном отношении не более 0,4 для улучшения удобоукладывае-мости следует вводить суперпластификаторы. Стойкость бетонов су щественно повышается при пропитке их расплавленной серой или мономерами типа акрилатов с последующим термокаталитическим или радиационным отверждением. [c.91]
Асбовинил используется для защитных покрытий металла, дерева и бетона, а также для изготовления листов, пластин, труб, арматуры и отдельных деталей, работающих в агрессивных средах разбавлеиных щелочах, растворах солей, неокисляющих минеральных и органических кислотах, в сухпх и влажных газах, в пресной и морской воде. Данные о химической стойкости асбовинила при- [c.347]
Эпоксидные замазки образуются при смешении двух котонентов — эпоксидного олигомера с минеральным наполнителем и отвердителя. Время затвердевания при комнатной температуре — 4 часа. Затвердевшая замазка обладает высокой стойкостью в разбавленных и концентрированных щелочах при обычных и повьш1енных температурах, в воде, растворах солей и разбавленных кислот. Имеет хорошее сцепление с керамикой и бетоном, обладает достаточно высокой механической прочностью, минимальной усадкой и влагопоглощением. В среде органических кислот, разбавленных неорганических кислот при повышенных температурах и растворителей стойкость замазки невысока. Замазка применяется для кладки и соединения коррозионностойкой футеровки, бетонных и кирпичных конструкций. [c.107]
Отвердевшие замазки — кислотостойкие материалы, хорошо сцепляются с бетоном и керамикой, имеющими высокую механическую прочность и незначительное водопоглощение. Они обнаруживают высокую стойкость при воздействии коррозионных сред, в частности, воды, растворов солей, неорганических кислот при комнатйой температуре (особенно — разбавленных, например, [c.275]
В последнее десятилетие П. А. Ребиндером и его учениками была разработана новая область науки — физикохимическая механика. Под влиянием различных факторов все твердые тела теряют механическую прочность и разрушаются. Выяснение причин деформации и получение различного рода материалов с заданными механическими свойстиами и структурой являются основными задачами этой еще молодой науки. Однако, несмотря на ее молодость, на основе установленных ею законов уже найдены новые методы упрочнения пористых дисперсных тел — бетонов, керамики. Катализаторы и сорбенты тоже принадлежат к пористым телам, и для управления их механиче-га ой прочностью можно применить те же законы. Одна из причин снижения нрочности пористых тел — высокие внутренние напряжения, возникающие при образовании пространственной структуры. Когда из раствора соли выделяется гидроокись металла, частицы этой фазы слипаются, срастаются и образуют структуру. Чем больше пересыщены растворы солей, тем лучше срастаются частицы. Но при этом возникают внутренние напряжения, которые разрушают кристаллизационную структуру, уменьшают ее механическую прочность. Внутренние напряжения возрастают также с увеличением пересыщения. Поэтому необходимо, как требует физико-химическая механика, установить оптимальные условия создания структуры с минимальными внутренними наиряжениями. [c.67]
Учитывая эти особенности механизма коррозионных процессов, можно моделировать коррозию арматуры в железобетоне путем погружения образцов в растворы солей, в частности поваренной соли и хлористого кальция. При этом ускоряется процесс и упрощается методика испытаний, легче наблюдать за режимом проведения экспериментов и поддерживать заданную концентрацию агрессивной среды. Однако следует учитывать, что если анион кислоты практически не образует с составляющими цементного камня труднорастворимых соединений (это характерно, например, для нитрат-ионов, а также хлорид-ионов при использовании бетонов на низкоалю-минатных цементах или цементах, содержащих повышенные дозировки гипса), то концентрация соответствующих ионов изменяется по сечению изделий в различное время по законам диффузии. Такое распределение может быть описано с помощью второго закона Фика. [c.136]
Многолетняя эксплуатация бетонов, модифицированных кремнип-органическими полимерами, содержащими водород у атома кремния, доказывает возможность существенного увеличения стойкости бетонов нормального твердения и пропаренных в условиях циклического увлажнения и высушивания, капиллярного подсоса и испарения растворов солей высоких концентраций (237—327 г/л). Оптимальное содержание полимера в 1 м бетона составляет 250—300 г при содержании активного водорода в связи 81—Н, равном 1,30—1,42%. Результаты работ по повышению коррозионной стойкости и морозостойкости тяжелых бетонов были использованы для улучшения комплекса важных свойств легких бетонов [8], крупнопористых беюнов из цементно-щебеночных смесей, твердеющих при отрицательных температурах, бетонов на основе белых и цветных цементов, составов на основе цементного клея. Например, трещиностойкость легких бетонов, модифицированных кремнийорганическими полимерами [9], значительно повышается. [c.142]
Бетофикс является водной эмульсией свободных жирных кислот с диспергированной частью кальциевых мыл и активной кремнекислотой. Не содержит свободных щелочей, которые нарушали бы процесс схватывания и прочность растворов и бетона, и солей алюминия, понижающих сопротивление бетона действию агрессивных сульфатных вод. Изготовляется по ТУ (чехословацкого патента) ЧСП 90779. Должен удовлетворять следующим техническим требованиям [c.48]
Поверхностная обработка цементных растворов и бетонов кремнийорганическими составами снижает не только водопоглощение (табл. 45), но и поглощение агрессивных растворов, например, 5% -ного NagSOi и 2% -ной НС1 (табл. 46). Это значительно повышает коррозионную стойкость цементных растворов и бетонов при действии на них агрессивных растворов солей и кислот. [c.132]
В качестве мероприятия против коррозии арматуры И. А. Александров рекомендовал уплотнять поверхностные слои бетона железобетонных конструкций, в частности, путем флюа-тирования — обработки растворами солей фтористоводородной кислоты. [c.19]
chem21.info
Как спасти бетон от разрушения солью — Антилёд-Сибирь
Бетон применяют на дорогах общего пользования (так называемые «бетонки»), им заливают площадки перед подъездами и гаражами, из него делают лестницы. А для удаления наледи на бетоне часто пользуются технической солью, и она быстро разрушает покрытие. Как уберечь бетон?
В нашем предыдущем фотоматериале мы показали, какой вред наносит тротуарной плитке обработка ломом или ледорубом в сочетании с солью. Но для того, чтобы разрушить бетон, совсем не обязательно орудовать ломом — достаточно одной только технической соли или пескосоляной смеси. Об этом, а также о том, как уберечь бетон, мы и расскажем сегодня.
Общая картина - бетонная площадка у подъезда
Взгляните — это площадка перед подъездом недавно построенной многоэтажки. Построили дом, площадку залили бетоном. Потом наступила зима, и у подъезда стало скользко. Лёд перед подъездом стали посыпать песко-соляной смесью (ПСС). Этот участок хорошо видно на снимке, он более тёмный.
Поврежденный участок бетона
Тот участок бетона, что подвергался обработке ПСС, выглядит темнее, потому что его структура нарушена. Соль, вступив в химическую реакцию с «молодым» бетоном, вызвала его шелушение, разрушила его поверхность.
Контраст
Наклонившись поближе, мы хорошо увидим контраст между двумя участками бетона. Повреждённый солью участок как будто посыпан мелким гравием. На самом деле это не гравий, а отколовшиеся кусочки разрушенного солью бетона. Особенно опасно применять соль или ПСС на «молодом» бетоне, с момента заливки которого прошло меньше года.
Посмотрим поближе
Пригдядимся внимательнее — поверхность разрушена, вовнутрь слоя легко попадает влага и последующие порции соли. Процесс разрушения проникает всё глубже, и уже совсем скоро на этом месте образуется выбоина, а потом и яма. Споткнуться и упасть здесь станет обычным делом!
Как защитить бетон?
Но защитить бетон от разрушений нетрудно. Достаточно просто применять не соль с песком, а современные противогололёдные материалы из серии Айсмелт. Среди Аймелтов есть продукты для самых суровых сибирских зим — ICEMELT Power работает даже при морозе в -31 градус Цельсия!
Да, пока в Новосибирске, и вообще в Сибири, чаще пользуются песком и солью, на первый взгляд они дешевле. Но дешевизна эта кажущаяся — она приводит к ямам, травмам, а как следствие и к необходимости ремонта бетонной площадки.
antiled-sib.ru