19. Монолитные безбалочные перекрытия. Конструктивные решения и расчет на полосовую и сплошную нагрузку. Перекрытия монолитные безбалочные
76 Балочные сборно-монолитные перекр. Безбалочные перекрытия
Балочные сборно-монолитные перекрытия
Сборно-монолитная конструкция перекрытия состоит из сборных элементов и монолитных частей, бетонируемых непосредственно на площадке. Затвердевший бетон этих монолитных участков связывает конструкцию в единую совместно работающую систему.
При пролетах до 9 м возможны перекрытия с предварительно напряженными элементами, которые имеют вид железобетонной доски и служат остовом растянутой зоны балки, снабженной арматурой
На эти элементы устанавливают корытообразные армированные элементы, а по ним, как по опалубочной форме, укладывают монолитный бетон. В неразрезных перекрытиях описанного типа над опорами устанавливают дополнительную арматуру.
Основное конструктивное назначение капителей в том, чтобы обеспечить жесткое сопряжение перекрытия с колоннами, уменьшить размер расчетных пролетов и создать опору для панелей. Конструкция сборного безбалочного перекрытия состоит из трех основных элементов: капители, надколонной панели и пролетной панели. Капитель опирается на уширения колонны и воспринимает нагрузку от надколенных панелей, идущих в двух взаимно перпендикулярных направлениях и работающих как балки.
Безбалочные монолитные перекрытия
Безбалочное монолитное перекрытие представляет собой сплошную плиту, опертую непосредственно на колонны с капителями . Устройство капителей вызывается конструктивными соображениями, с тем чтобы создать достаточную жесткость в месте сопряжение монолитной плиты с колонной, обеспечить прочность плиты на продавливание по периметру капители, уменьшить расчетный пролет безбалочной плиты и более равномерно распределить моменты по ее ширине.
Для опирания безбалочной плиты на колонны в производственных зданиях применяют капители трех типов: тип I — при легких нагрузках, типы II и III — при тяжелых нагрузках.
Вбезбалочных сборно-монолитиых перекрытиях остовом для монолитного бетона служат сборные элементы — надколенные и пролетные панели Одно из возможных решений состоит в том, что капители на монтаже временно крепят к колоннам съемными хомутами. Связь между колонной и капителью создается после замоноличивания перекрытия и образования бетонных шпонок на поверхности колонны.
На капителях колонн в двух взаимно перпендикулярных направлениях укладывают надколенные плиты; в центре — пролетную плиту такой же толщины, опертую по контуру. Сборные плиты — предварительно напряженные, армированные высокопрочной арматурой.
77 Сборные ж\б конструкции одноэтажных промзданий, принципы расчёта и конструирования.
1) Элементы конструкций: колонны (стойки), заделанные в фундаменты, ригели покрытия (балки, фермы, арки), опирающеяся на колнны, панели покрытия, уложенные по ригелям, подкрановые балки, световые и аэрационные фонари. Основная конструкция каркаса – поперечная рама, образованная колоннами и ригелями.
Пространственная жесткость и устойчивость обеспечивается защемлением колонн в фундаменты. В поперечном направлении пространственная жесткость обеспечивается поперечными рамами, в продольном – продольными рамами образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями.
2) Компоновка здания – сетка колонн одноэтажных каркасных зданий с мостовыми кранами может быть 12х18, 12х24, 12х30 или 6х18 6х24 6х 30м Шаг колонн преимущественно 12м, если при этом шаге используются стеновые панели 6м то необходима установка по крайним осям промежуточные фахверковые колонны. При шаге колонн 12м возможен щаг ригелей 6м с использованием в качестве промежуточной опоры подстропильной фермы.
3) Связи: Основное назначение: обеспечение жесткости покрытия в целом,
придание устойчивости сжатым поясам ригелей поперечных рам, восприятие ветровой нагрузки, восприятие тормозных усилий от мостовых кранов. Виды связей: вертикальные, горизонтальные по нижнему поясу ригелей, горизонтальные по верхнему поясу ригелей, связи по фонарям.
4) Расчетная схема и нагрузки Поперечная рама одноэтажного каркасного здания испытывает действие постоянных нагрузок от массы покрытия и различных временных нагрузок от снега, вертикального и горизонтального давления мостовых кранов, положительного и отрицательного давления ветра и др.
В расчетной схеме рамы соединение ригеля с колонной считается шарнирным, а соединение колонны с фундаментом - жестким. Длину колонн принимают равной расстоянию от верха фундамента до низа ригеля Цель расчета поперечной рамы – определение усилий в колоннах и подбор их сечения Ригель рамы рассчитывается независимо как однопролетную балку ферму или арку.
5) Плиты – крупные ребристые панели 3×12, 3х6м (основные )1,5×12, 1,5×3 (доборные) или типа «ТТ»
6) Балки покрытия - пролет 12, 18, 24м По форме очертания : ломанные, трапецевидные По форме сечения : прямоугольного, двутавровое , тавровое Высота балок 1/10…1/15 пролета
7)Фермы – пролет 18, 24, 30м Высота ферм 1/7..1/9 пролета
Плоские покрытия зданий компануются по 2 схемам: беспрогонной и прогонной.Безпрогонная схема- плиты крепят к ригелям , сварка в 3-х точках, замоноличивание. Длина опирания плиты 6м пролета-80мм min, пролета 12м – 100мм min. В этой схеме возможно расположение ригелей в продольном и поперечном направлении.
Прогонная схема- на ригелях крепят прогоны прямоугольного или таврового сечения, а по ним укладывают плиты шириной 1,5-3м. Эта схема более трудоемка и применяется при реконструкции здания.
В качестве элементов покрытия применяются ребристые плиты 6-12м, плиты типа 2Т, КЖС, типа П и оболочки. Плита 2Т и П может служить одновременно и ригелем.
В промышленных одноэтажных зданиях применяются колонны сплошного сечения и двухветвевые. Выбор сечения колонны зависит от грузоподъемности крана, высоты здания и шага колонн. В торце производственных зданий устанавливаются фахверковые колонны.
При компоновке конструктивной схемы здания для создания жесткого каркаса выбирают вертикальные и горизонтальные связи. Их количество и тип зависит от технологического процесса, количества температурных блоков, высоты здания и шага колонн.
Сборные железобетонные покрытия после сварки закладных деталей и замоноличивания образуют жесткую горизонтальную диафрагму, связывающую поверху поперечные рамы в единый пространственный блок, размеры которого определяются расстоянием между температурными швами. Нагрузки от массы покрытия снега, ветра, приложены одновременно по всем рамам блока. При этих нагрузках пространственная работа каркаса не проявляется и каждую плоскую раму можно рассматривать в отдельности. Нагрузка же от мостовых кранов приложена к 2-м или 3-м рамам блока, но благодаря связевой диафрагме в работу включаются и остальные рамы блока. Происходит пространственная работа каркаса, которая в расчете учитывается коэффициентом динамичности Cdin.
При длине блока 72м для второй от торца блока поперечной рамы находящейся в наиболее неблагоприятных условиях (отсутствует помощь соседних рам) , при шаге 12м Cdin=3,5 и при шаге 6м Cdin=4,7. Значения коэффициентов динамичности Cdin тем больше чем меньше шаг колонн и больше длина температурного блока. При остальных нагрузках Cdin=1.
Цель расчета поперечной рамы – подбор определенных усилий в колоннах от расчетных нагрузок и определение перемещений. Подбор сечений арматуры в колоннах и проверка назначенных сечений этих колонн. Прежде всего устанавливают расчетную схему здания, значение нагрузок и места их приложения. Поперечная рама – плоская стержневая система с жестким защемлением в фундаменте и шарнирным соединением ригелей с колонной.
Поперечная рама одноэтажного промышленного здания расчитывается на воздействие:
Постоянных нагрузок (масса покрытия, стены, собственный вес, масса колонн)
Временные нагрузки (длительного действия и кратковременного).
Длительные – от массы стационарно установленного оборудования, одного мостового крана, с коэффициентом 0,6 и части снеговой нагрузки.
Кратковременные – ветровая, нагрузка от 2-х сближенных кранов и части снеговой нагрузки.
Расчет рам выполняют на основные и особые сочетания нагрузок.
Постоянные нагрузки от массы покрытия передаются на колонну как вертикальное опорное давление ригелей F и определяется:
F=q·Af·G, где q-нагрузка от массы кровли, Аf-площадь на колонне среднего ряда.
Аfср.р=a·l; Afкр.р=a·l/2. G-нагрузка от массы ригеля. G=m·g.
Нагрузка F от покрытия приложена по оси опоры ригеля с эксцентриситетом e относительно оси надкрановой части колонн. Исследования установили, что давление приложено на расстоянии 1/3 длины опоры от внутренней ее грани. Расстояние до продольной координационной оси м.б. принято 175мм. Момент от действия этой нагрузки в надкрановой части: N1=F·e.
В подкрановой части колонны действует суммарный изгибающий момент, каждый со своим знаком: N2=M1+(Fk*ek)+Fп.б.*eп.б.+(-Fw*ew)
Снеговая нагрузка действующая на колонны поперечника здания:
F=So*Af*γf*μ, где So- нормативный вес снегового покрова в зависимости от географического района строительства; μ- коэффициент зависящий от профиля кровли; γf- коэффициент надежности по нагрузке .
Эксцентриситет приложения этой нагрузки принимается также как для постоянной нагрузки от покрытия.
Ветровая нагрузка – на колонну передается через стеновые панели, в виде распределенной нагрузки. P=a·ω, где ω- расчетное ветровое давление принимается в зависимости от района строительства и высоты здания.
Ветровая нагрузка в месте соеденения колонны с ригелем заменяется сосредоточенной.
Крановая нагрузка передается от 2-х сближенных кранов по линии влияния опорной реакции подкрановой балки.одно колесо крана распологается на опоре. Крановая нагрузка действует вертикально и горизонтально. Max и min вертикальная крановая нагрузка: Dmax=Fmax·Σyi, где Fmax- давление одного колеса крана на рельс подкрановой балки; Σyi- сумма ординат линий влияния в местах расположения колес крана.
Вертикальная крановая нагрузка передается через подкрановые балки на подкрановую часть колонны с эксцентриситетом от подкрановой балки оси до оси сечения подкрановой части колонны.
Момент от крановой вертикальной нагрузки: Mmax= Dmax·lп.б.
Горизонтальная нагрузка на колонну от торможения от 2-х кранов определяется по тем же линиям влияния: H=Hmax·Σyi.
Основная система получается введением дополнительной связи препятствующей горизонтальному смещению.
Задаемся размерами сечения колонны и определяем их жесткости как для бетонного сечения , предпологает упругую работу материала.
Основная система подвергается единичному смещению, возникает реакция RΔ от смещения.
Затем основную систему последовательно загружаем постоянной и временной нагрузкой. Fпост.кр; Fs; P; N; Dmax;H.
Находим суммарную реакцию от каждого вида загружения во всех стойках. R1pi=Σrgi
Определяем изгибающий момент , продольную силу и поперечную силу в каждой стойке или колонне, как и консольной балке от действия упругой реакции Re и одной из внешних нагрузок. Для расчета колонн необходимо знать усилия как минимум в 3-х сечениях:
А) над крановой консолью
Б) под крановой консолью
В) в основании колонны.
А) Mmax--- N; Q
Б) Mmin----- N;Q
В) Nmax--- M; Q
Рассматривая две группы основных сочетаний. В 1 гр. Основных сочетаний учитываются постоянные и одна временная нагрузка с коэффициентом сочетания γi=1. во второй группе учитываются постоянные и несколько временных в их наиболее невыгодном сочетании при γi=0,9
studfiles.net
Монолитные безбалочные железобетонные перекрытия при отсутствии капителей колонн Текст научной статьи по специальности «Строительство. Архитектура»
СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ
УДК 624.012.45.05
В.А.Тесля
МОНОЛИТНЫЕ БЕЗБАЛОЧНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ПЕРЕКРЫТИЯ ПРИ ОТСУТСТВИИ КАПИТЕЛЕЙ КОЛОНН
Многоэтажные здания проектируют, как правило, с полным несущим каркасом с применением балочной схемы перекрытия. Применение безба-лочных покрытий позволяет значительно уменьшить кубатуру здания, а тем самым и его стоимость, даже при высоте этажей от 3,6 до 4,8 м.
Колонна 40^40 см
Пространственный каркас зданий с безбалоч-ными перекрытиями представляет собой рамную систему в обоих направлениях, когда ригелями служит безбалочная плита, тесно связанная с колоннами при наличии и отсутствии капителей. Последнее решение в настоящее время находит
Колонна 40^40
Рис. 2. Графики определения расстояний расположения колонн
широкое применение при возведении гражданских зданий. В промышленном строительстве безба-лочные плоские перекрытия выполняются при наличии капителей в верхней части колонн, тем самым создаётся достаточная жёсткость сопряжения плиты с колонной, увеличивается прочность монолитной плиты на срез по периметру примыкания к колонне, уменьшается расчётный пролёт плиты и воздаётся более равномерное распределение усилий по её ширине [1].
Безбалочные перекрытия такого типа экономически выгодными по сравнению с балочными -ребристыми становятся при пролётах до 6 м и временных нагрузках свыше 5 кН /м2. Поэтому они широко применяются в многоэтажных зданиях, складах, холодильниках, большой ёмкости резервуарах и других подобных сооружениях.
Здания с применением безбалочных перекрытий с колоннами при отсутствии капителей утрачивают упомянутые выше конструктивные преимущества. При этом возникает целый ряд вопросов, по которым не имеется достаточно информации по нормативным требованиям, которые необходимо учитывать при проектировании и возведении. В зависимости от расположения колонн при регулярном и нерегулярном их размещении, внутри площади плиты и по её краям возникают различные расчётные схемы. Качественный расчёт по каждой из расчётных схем можно выполнить при условии достоверно полного определения действующих нагрузок и возникающих при этом нормальных сил и изгибающих моментов в двух взаимно располагающих плоскостях.
В настоящей работе предлагается методика по определению основных геометрических характеристик: толщины монолитных железобетонных плит, размеров поперечного сечения колонн, максимальных расстояний их расположения. Определяемые значения принимаются в соответствии классов бетона по прочности на сжатие. В зависимости от расстояний продольным и поперечным осям проектируемого здания по предварительному расположению колонн определяем грузовую площадь и действующую при этом нагрузку с учётом веса плиты, конструкции пола, наличия различные перегородок и временной полезной нагрузки.
Выполняется это следующим образом. По грузовой площади для различных классов бетона от В20 до В35 принимаемых колонн с сечением 40-40 или 50-50 см с учётом возможных максимальных изгибающих моментов, которые может воспринять плита, по графикам на рис.1 определяем её толщину и уточняем размер суммарной нагрузки. Принятая толщина плиты позволяет уточнить суммарную нагрузку с учётом фактического размера толщины монолитной плиты и принять окончательно размеры сечения колонн.
Дополнительно необходимо проверить максимально допустимые расстояния по осям размещения колонн согласно графикам на рис.2.
Необходимые расстояния можно принять в зависимости от размеров сечений колонн, классов бетона, толщины плиты и суммарной расчётной нагрузки от 9 кН/м2 для плит толщиной в 18 см, до 11,75 кН/м2 для плит толщиной в 28 см. При временной (полезной) расчётной нагрузке равной 1,85 кН/м2.
При других значениях нагрузок можно использовать графики рис.2, при этом по оси абсцисс подобрать грузовую площадь в соответствии с ростом (или уменьшением) действующей нагрузки.
Теперь, когда все основные параметры определены, можно приступить конструктивному расчёту плиты на изгиб и действие поперечных сил. Максимальные изгибающие моменты и поперечные силы будут по граням колонн расположенных посередине перекрытий, для крайних колонн по периметру перекрытий максимальные значения этих усилий будут в направлении середины перекрытий [2].
При отсутствии капителей колонн действие вертикальной равномерно распределённой нагрузки при расчёте плиты по граням колонн будет максимальным при определении нагрузки по площадям А и В как это указано на рис.З
Рис.3. Грузовые площади действия вертикальной нагрузки
В этом случае изгибающие моменты и поперечные определяются частично при равномерно распределённом действии нагрузки и преобладающей нагрузке по закону треугольника с максимальной ординатой посередине пролёта.
Принимая максимальное одиночное армирование плиты в сечении по грани колонн можно с достаточной точностью определить максимальные значения моментов для плит разной толщины по принятому классу бетона и размерам поперечного сечения колонн. Для колонн сечением 50-50 см
максимальные изгибающие моменты приведены на графике рис.4.
Вкттбте
...............V
ф ю ф т т ют тхозо
Рис. 4. График максимальных моментов плит разной толщины и классов бетона для колонн сечением 50-50 см Кроме основной информации график позволяет за вычетом момента от действия горизонтальных нагрузок определять величину суммарной вертикальной нагрузки по площади, очертание которой приведено на рис.3.
При несоответствии ожидаемого результата, график позволяет принимать решение по изменению класса бетона или толщины плиты.
Можно повысить несущую способность монолитной плиты, приняв двойное армирование сжатой зоны сечения плиты. Однако это увеличит расход арматурной стали и трудоёмкость армирования плиты у примыкания к колонне. Учитывая, что колонна имеет свою вертикальную арматуру, создаются дополнительные трудности при бетонировании. Такая плотность в армировании при относительно малой толщине плиты не позволит обеспечить хорошее уплотнение бетона, что значительно уменьшит её несущую способность при изгибе и по восприятию поперечных сил. Применяя более пластичный бетон при бетонировании плиты в примыкании её к колонне, получить необходимой прочности бетон невозможно. Возникает ситуация снижения несущей способности плиты. Поэтому дополнительное армирование в этом случае применять не следует.
Можно рекомендовать армирование плиты плоскими сварными сетками по Госту 14098-85 К1 [3]. Всего потребуется 6 типов сеток, часть которых размещается по верхней поверхности плиты и рабочими стержнями арматуры воспринимает отрицательные моменты, вторая часть сеток воспринимает положительные моменты и находится на нижней грани плиты. Толщину защитного слоя необходимо принимать одинаковой для всех сеток равной 20 мм. Расположение сеток указано по схеме армирования на рис.5.
Размеры сеток с указанием рабочей и монтажной арматуры указаны в таблице 1. Как правило, во всех сетках, за исключением сеток С-1 и С-4,
б)
С-6
С-5 С-4 С-5
Г 1 Г
С-6
С-5 С-4 С-5
1 1 С-6 1“
С-5 С-4 С-5
С-6
&т
6000
Рис. 5. Схема армирования монолитной плиты: а) расположение верхних сеток; б) расположение нижних сеток
& 4
2> 4
2> 4
С~_
Л\
00
2> 4+& О Ш)
5 8 , (00 30)
ГГ
2> 4
2> 45 О Ш)
£
+
4
■в.
од
Ю
__^
Є
■в.
+
■&
од
$
£!
---Ч г \
ТО
00
Рис. 6. Арматурная сетка С-1
расположение стержней рабочих и монтажных принять равным 200 мм.
Расположение стержней сетки С-1 показано на рис. 6 и 7. Необходимо особо обратить внимание на расположение стержней при совместном армировании плиты в зоне примыкания её к колоннам, как это показано на рис.7. Вертикальные стрежни арматуры колонн должны находиться внутри контура крайних стержней большего диаметра. Это можно обеспечить качественным изготовлением
сетки С-1 при гарантированном соблюдении всех размеров расположения стержней арматуры.
Учитывая, что в сетках С-2,3,5 и 6 имеются рабочие и монтажные стержни, их расположение и закрепление перед бетонированием должно строго соответствовать расположению, указанному на рис.5 с учётом информации в таблице.
Рабочие стержни диаметром не менее 8 мм воспринимают усилия изгибающих моментов, остальные монтажные стержни являются соеди-
20 4
№ п/ п Наиме- нование сетки Размер сетки, мм Рабочая арматура Монтажная арматура Масса сетки, кг
диаметр кол-во арматуры и ее длина, мм диаметр кол-во арматуры и ее длина, мм
1 С-1 3600x3000 0І8 5018/=3600 отсутствует 134,15
5018/=3000
0І4 4014/=3600
4014/=3000
010 8010/=3600
10010/=3000
2 С-2 3000x2400 08 1208/=3000 016 1206/=2400 22,20
3 С-3 3600x2000 08 1008/=3600 06 1806/=2000 22,20
4 С-4 2400x2000 08 1208/=2000 отсутствует 19,00
1008/=2400
5 С-5 3600x2000 08 1808/=2000 06 1006/=3600 22,20
6 С-6 3000x2400 08 1508/=2400 06 1206/=3000 22,20
нительными при сварке сеток.
Колонны необходимо проектировать прямоугольного сечения, принимая меньший размер по направлению продольных осей и больший в поперечном направлении здания. Такая необходимость диктуется обеспечением несущей способности плиты в примыкании её к колонне в силу того, что в этом случае возрастает величина изгибающих моментов от дополнительного воздействия горизонтальных нагрузок в поперечном направлении.
Увеличение моментов, которые будут иметь место по граням колонны, линейно зависят от увеличения ширины грани сечения колонны. При ширине в 60 см, момент который может воспри-
нять плита, в 1,2 раза больше того момента, когда ширина грани сечения равна 50 см.
Настоящая статья в основном касается вопросов по проектированию безбалочных монолитных железобетонных перекрытий, опирающихся непосредственно на железобетонные колонны не имеющих капителей. В статье достаточно информационного материала, который позволяет значительно сократить время по определению всех геометрических размеров элементов перекрытий, условий расчёта и армирования, а также определения несущей способности плит при различных классах бетона.
СПИСОК ЛИТЕРАТУРЫ.
1. Байков В. Н., Сигалов Э. Е. Железобетонные конструкции. - М.: Стройиздат, 1986. - 728с.
2. Научно - технический отчёт по теме: разработка методики расчёта и конструирования монолитных железобетонных безбалочных перекрытий на продавливание. - М.: Госстрой России, ГУП «НИ-ИЖ5», 2002. - 55с.
3. Пособие по проектированию бетонных и железобетонных конструкций из тяжёлых и лёгких бетонов без предварительного напряжения арматуры. - М.: Центральный институт типового проектирования, 1989. - 191с.
□ Автор статьи:
Тесля
Виктор Андреевич - доцент каф. строительных конструкций КузГТУ Тел. 8 (3842) 58-08-86
cyberleninka.ru
77 Балочные сборно-монолитные перекр. Безбалочные перекрытия
Балочные сборно-монолитные перекрытия
Сборно-монолитная конструкция перекрытия состоит из сборных элементов и монолитных частей, бетонируемых непосредственно на площадке. Затвердевший бетон этих монолитных участков связывает конструкцию в единую совместно работающую систему.
При пролетах до 9 м возможны перекрытия с предварительно напряженными элементами, которые имеют вид железобетонной доски и служат остовом растянутой зоны балки, снабженной арматурой
На эти элементы устанавливают корытообразные армированные элементы, а по ним, как по опалубочной форме, укладывают монолитный бетон. В неразрезных перекрытиях описанного типа над опорами устанавливают дополнительную арматуру.
Безбалочное сборное перекрытие представляет собой систему сборных панелей, опертых непосредственно на капители колонн.
Основное конструктивное назначение капителей в том, чтобы обеспечить жесткое сопряжение перекрытия с колоннами, уменьшить размер расчетных пролетов и создать опору для панелей. Конструкция сборного безбалочного перекрытия состоит из трех основных элементов: капители, надколонной панели и пролетной панели. Капитель опирается на уширения колонны и воспринимает нагрузку от надколенных панелей, идущих в двух взаимно перпендикулярных направлениях и работающих как балки.
Безбалочные монолитные перекрытия
Безбалочное монолитное перекрытие представляет собой сплошную плиту, опертую непосредственно на колонны с капителями . Устройство капителей вызывается конструктивными соображениями, с тем чтобы создать достаточную жесткость в месте сопряжение монолитной плиты с колонной, обеспечить прочность плиты на продавливание по периметру капители, уменьшить расчетный пролет безбалочной плиты и более равномерно распределить моменты по ее ширине.
Для опирания безбалочной плиты на колонны в производственных зданиях применяют капители трех типов: тип I — при легких нагрузках, типы II и III — при тяжелых нагрузках.
Вбезбалочных сборно-монолитиых перекрытиях остовом для монолитного бетона служат сборные элементы — надколенные и пролетные панели Одно из возможных решений состоит в том, что капители на монтаже временно крепят к колоннам съемными хомутами. Связь между колонной и капителью создается после замоноличивания перекрытия и образования бетонных шпонок на поверхности колонны.
На капителях колонн в двух взаимно перпендикулярных направлениях укладывают надколенные плиты; в центре — пролетную плиту такой же толщины, опертую по контуру. Сборные плиты — предварительно напряженные, армированные высокопрочной арматурой.
78 Сборные ж\б конструкции одноэтажных промзданий, принципы расчёта и конструирования.
1) Элементы конструкций: колонны (стойки), заделанные в фундаменты, ригели покрытия (балки, фермы, арки), опирающеяся на колнны, панели покрытия, уложенные по ригелям, подкрановые балки, световые и аэрационные фонари. Основная конструкция каркаса – поперечная рама, образованная колоннами и ригелями.
Пространственная жесткость и устойчивость обеспечивается защемлением колонн в фундаменты. В поперечном направлении пространственная жесткость обеспечивается поперечными рамами, в продольном – продольными рамами образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями.
2) Компоновка здания – сетка колонн одноэтажных каркасных зданий с мостовыми кранами может быть 12х18, 12х24, 12х30 или 6х18 6х24 6х 30м Шаг колонн преимущественно 12м, если при этом шаге используются стеновые панели 6м то необходима установка по крайним осям промежуточные фахверковые колонны. При шаге колонн 12м возможен щаг ригелей 6м с использованием в качестве промежуточной опоры подстропильной фермы.
3) Связи: Основное назначение: обеспечение жесткости покрытия в целом,
придание устойчивости сжатым поясам ригелей поперечных рам, восприятие ветровой нагрузки, восприятие тормозных усилий от мостовых кранов. Виды связей: вертикальные, горизонтальные по нижнему поясу ригелей, горизонтальные по верхнему поясу ригелей, связи по фонарям.
4) Расчетная схема и нагрузки Поперечная рама одноэтажного каркасного здания испытывает действие постоянных нагрузок от массы покрытия и различных временных нагрузок от снега, вертикального и горизонтального давления мостовых кранов, положительного и отрицательного давления ветра и др.
В расчетной схеме рамы соединение ригеля с колонной считается шарнирным, а соединение колонны с фундаментом - жестким. Длину колонн принимают равной расстоянию от верха фундамента до низа ригеля Цель расчета поперечной рамы – определение усилий в колоннах и подбор их сечения Ригель рамы рассчитывается независимо как однопролетную балку ферму или арку.
5) Плиты – крупные ребристые панели 3×12, 3х6м (основные )1,5×12, 1,5×3 (доборные) или типа «ТТ»
6) Балки покрытия - пролет 12, 18, 24м По форме очертания : ломанные, трапецевидные По форме сечения : прямоугольного, двутавровое , тавровое Высота балок 1/10…1/15 пролета
7)Фермы – пролет 18, 24, 30м Высота ферм 1/7..1/9 пролета
Плоские покрытия зданий компануются по 2 схемам: беспрогонной и прогонной.Безпрогонная схема- плиты крепят к ригелям , сварка в 3-х точках, замоноличивание. Длина опирания плиты 6м пролета-80мм min, пролета 12м – 100мм min. В этой схеме возможно расположение ригелей в продольном и поперечном направлении.
Прогонная схема- на ригелях крепят прогоны прямоугольного или таврового сечения, а по ним укладывают плиты шириной 1,5-3м. Эта схема более трудоемка и применяется при реконструкции здания.
В качестве элементов покрытия применяются ребристые плиты 6-12м, плиты типа 2Т, КЖС, типа П и оболочки. Плита 2Т и П может служить одновременно и ригелем.
В промышленных одноэтажных зданиях применяются колонны сплошного сечения и двухветвевые. Выбор сечения колонны зависит от грузоподъемности крана, высоты здания и шага колонн. В торце производственных зданий устанавливаются фахверковые колонны.
При компоновке конструктивной схемы здания для создания жесткого каркаса выбирают вертикальные и горизонтальные связи. Их количество и тип зависит от технологического процесса, количества температурных блоков, высоты здания и шага колонн.
Сборные железобетонные покрытия после сварки закладных деталей и замоноличивания образуют жесткую горизонтальную диафрагму, связывающую поверху поперечные рамы в единый пространственный блок, размеры которого определяются расстоянием между температурными швами. Нагрузки от массы покрытия снега, ветра, приложены одновременно по всем рамам блока. При этих нагрузках пространственная работа каркаса не проявляется и каждую плоскую раму можно рассматривать в отдельности. Нагрузка же от мостовых кранов приложена к 2-м или 3-м рамам блока, но благодаря связевой диафрагме в работу включаются и остальные рамы блока. Происходит пространственная работа каркаса, которая в расчете учитывается коэффициентом динамичности Cdin.
При длине блока 72м для второй от торца блока поперечной рамы находящейся в наиболее неблагоприятных условиях (отсутствует помощь соседних рам) , при шаге 12м Cdin=3,5 и при шаге 6м Cdin=4,7. Значения коэффициентов динамичности Cdin тем больше чем меньше шаг колонн и больше длина температурного блока. При остальных нагрузках Cdin=1.
Цель расчета поперечной рамы – подбор определенных усилий в колоннах от расчетных нагрузок и определение перемещений. Подбор сечений арматуры в колоннах и проверка назначенных сечений этих колонн. Прежде всего устанавливают расчетную схему здания, значение нагрузок и места их приложения. Поперечная рама – плоская стержневая система с жестким защемлением в фундаменте и шарнирным соединением ригелей с колонной.
Поперечная рама одноэтажного промышленного здания расчитывается на воздействие:
Постоянных нагрузок (масса покрытия, стены, собственный вес, масса колонн)
Временные нагрузки (длительного действия и кратковременного).
Длительные – от массы стационарно установленного оборудования, одного мостового крана, с коэффициентом 0,6 и части снеговой нагрузки.
Кратковременные – ветровая, нагрузка от 2-х сближенных кранов и части снеговой нагрузки.
Расчет рам выполняют на основные и особые сочетания нагрузок.
Постоянные нагрузки от массы покрытия передаются на колонну как вертикальное опорное давление ригелей F и определяется:
F=q·Af·G, где q-нагрузка от массы кровли, Аf-площадь на колонне среднего ряда.
Аfср.р=a·l; Afкр.р=a·l/2. G-нагрузка от массы ригеля. G=m·g.
Нагрузка F от покрытия приложена по оси опоры ригеля с эксцентриситетом e относительно оси надкрановой части колонн. Исследования установили, что давление приложено на расстоянии 1/3 длины опоры от внутренней ее грани. Расстояние до продольной координационной оси м.б. принято 175мм. Момент от действия этой нагрузки в надкрановой части: N1=F·e.
В подкрановой части колонны действует суммарный изгибающий момент, каждый со своим знаком: N2=M1+(Fk*ek)+Fп.б.*eп.б.+(-Fw*ew)
Снеговая нагрузка действующая на колонны поперечника здания:
F=So*Af*γf*μ, где So- нормативный вес снегового покрова в зависимости от географического района строительства; μ- коэффициент зависящий от профиля кровли; γf- коэффициент надежности по нагрузке .
Эксцентриситет приложения этой нагрузки принимается также как для постоянной нагрузки от покрытия.
Ветровая нагрузка – на колонну передается через стеновые панели, в виде распределенной нагрузки. P=a·ω, где ω- расчетное ветровое давление принимается в зависимости от района строительства и высоты здания.
Ветровая нагрузка в месте соеденения колонны с ригелем заменяется сосредоточенной.
Крановая нагрузка передается от 2-х сближенных кранов по линии влияния опорной реакции подкрановой балки.одно колесо крана распологается на опоре. Крановая нагрузка действует вертикально и горизонтально. Max и min вертикальная крановая нагрузка: Dmax=Fmax·Σyi, где Fmax- давление одного колеса крана на рельс подкрановой балки; Σyi- сумма ординат линий влияния в местах расположения колес крана.
Вертикальная крановая нагрузка передается через подкрановые балки на подкрановую часть колонны с эксцентриситетом от подкрановой балки оси до оси сечения подкрановой части колонны.
Момент от крановой вертикальной нагрузки: Mmax= Dmax·lп.б.
Горизонтальная нагрузка на колонну от торможения от 2-х кранов определяется по тем же линиям влияния: H=Hmax·Σyi.
Основная система получается введением дополнительной связи препятствующей горизонтальному смещению.
Задаемся размерами сечения колонны и определяем их жесткости как для бетонного сечения , предпологает упругую работу материала.
Основная система подвергается единичному смещению, возникает реакция RΔ от смещения.
Затем основную систему последовательно загружаем постоянной и временной нагрузкой. Fпост.кр; Fs; P; N; Dmax;H.
Находим суммарную реакцию от каждого вида загружения во всех стойках. R1pi=Σrgi
Определяем изгибающий момент , продольную силу и поперечную силу в каждой стойке или колонне, как и консольной балке от действия упругой реакции Re и одной из внешних нагрузок. Для расчета колонн необходимо знать усилия как минимум в 3-х сечениях:
А) над крановой консолью
Б) под крановой консолью
В) в основании колонны.
А) Mmax--- N; Q
Б) Mmin----- N;Q
В) Nmax--- M; Q
Рассматривая две группы основных сочетаний. В 1 гр. Основных сочетаний учитываются постоянные и одна временная нагрузка с коэффициентом сочетания γi=1. во второй группе учитываются постоянные и несколько временных в их наиболее невыгодном сочетании при γi=0,9
studfiles.net
Безбалочные перекрытия
● Особенностью безбалочных перекрытий является непосредственное опирание плит на капители колонн (рис. 9.10, а, б). Капители создают жесткое сопряжение перекрытия с колоннами в системе каркаса здания, увеличивают прочность плиты на излом и обеспечивают плиту продавливания. В таких перекрытиях вследствие отсутствия выступающих ребер лучше используется объем помещения, уменьшается строительная высота здания, сокращается объем стеновых материалов, улучшается освещенность и проветриваемость помещений. Вследствие этого безбалочные перекрытия широко применяют для многоэтажных складов, холодильников, мясокомбинатов, гаражей. Они экономичны в зданиях с большими временными нагрузками (v>10 кН/м2) и квадратной сеткой колонн.
Рис. 9.10. Безбалочные перекрытия:
1 — капитель; 2 — надколонная плита; 3 — пролетная плита
Безбалочные перекрытия бывают сборные, монолитные и сборно-монолитные.
■ Сборные безбалочные перекрытия. Эти перекрытия применяют при сетке колонн 6×6, 6×9, 9×9 м. Они состоят из капителей, надколонных и пролетных панелей. Капители опираются на уширения колонн, соединяются с ними шпонками (см. рис. 9.10, б) и воспринимают нагрузку от надколонных панелей, идущих в двух взаимно перпендикулярных направлениях. Панели соединяются с капителью сваркой закладных деталей и, таким образом, превращаются в неразрезную систему. Пролетная панель опирается на полки надколонных панелей и работает как плита, опертая по контуру. Классы бетона панелей В25 и В30, колонн и капителей В15...В50. Рабочая арматура из стали класса А-III.
К сборным безбалочным перекрытиям относят также бескапительные перекрытия, возводимые методом подъема этажей. Работа по возведению таких перекрытий производится в следующем порядке. Вначале устраивают фундаменты, устанавливают железобетонные колонны на высоту яруса (ярус до 15 м), устраивают подготовку пола 1-го этажа, по выровненной поверхности подготовки бетонируют одну над другой пакет железобетонных плит перекрытия, нанося между ними разделяющие слои, препятствующие сцеплению слоев бетона. В местах, где колонны пересекают перекрытия, устраивают отверстия, усиленные стальными закладными деталями — воротниками, предназначенными для увеличения прочности и жесткости плит на излом и продавливание. Подъем перекрытия на проектные отметки производят с помощью системы гидродомкратов, установленных на колоннах, после чего осуществляют их закрепление.
■ Монолитные безбалочные перекрытия. Они представляют собой гладкую плиту, опертую через капители на колонны. Толщину плиты назначают из условия достаточной ее жесткости h= (1/32...1/35)l2, где l2 — размер большего пролета плиты. Монолитную безбалочную плиту армируют рулонными или плоскими сварными сетками, укладываемыми над колоннами и в пролетах. Над колоннами стержни укладывают поверху в двух направлениях, в середине плиты — понизу в двух направлениях. В пересечениях надколонных и пролетных полос необходима установка как нижней (рис. 9.10, г), так и верхней рабочей арматуры (рис. 9.10, е). Вблизи колонн верхние сетки раздвигаются, либо в сетках устраивают отверстия с установкой дополнительных стержней, компенсирующих прерванную арматуру. Капители армируют конструктивно, по углам ставят стержни диаметром 8...10 мм и охватывают их горизонтальными хомутами.
■ Сборно-монолитные безбалочные перекрытия. Такие перекрытия работают подобно монолитным, однако для их возведения не требуется устройства поддерживающих лесов и опалубки, что повышает индустриальность их возведения. Эти перекрытия укладывают по сборным панелям, надколонным и пролетным панелям.
Поскольку безбалочные перекрытия жестко соединены с колоннами и работают с ними совместно, расчет их производят как элементов рам с жесткими узлами, расположенных в двух взаимно перпендикулярных направлениях. В сборном варианте такие рамы образуются колоннами, капителями и надколонными плитами, в монолитном — колоннами и полосой перекрытия, равной по ширине расстоянию между серединами двух пролетов, примыкающих к соответствующему ряду колонн.
Раму вначале рассчитывают на невыгоднейшие комбинации постоянных и временных нагрузок как упругую систему с учетом переменной жесткости по длине элементов. Затем строят объемлющую эпюру моментов и производят перераспределение усилий с учетом допущения пластических деформаций [12]. Кроме того, предусматривают расчет на продавливание плиты по периметру капители, а также расчет на излом панелей вдоль и поперек перекрытия.
Расчет сборного перекрытия на продавливание производят в сечениях, где очертание капители образует входящие углы или изменяется толщина плиты. Предполагается, что продавливание происходит по боковой поверхности пирамиды, боковые грани которой наклонены под углом 45° к горизонту. Прочность перекрытия будет обеспечена при соблюдении условия (6.3).
Расчет плиты безбалочного перекрытия на излом производят методом предельного равновесия. Экспериментальные исследования показали, что наиболее опасными загружениями являются: полосовая нагрузка через пролет и сплошная по всей площади.
При полосовом загружении в перекрытии образуются три линейных шарнира пластичности (рис. 9.10, д). Два верхних располагаются на расстоянии а = (0,08...0,12)l1 от осей колонн, нижний — в середине пролета. Изгибающие моменты, воспринимаемые на длине l2 верхним и нижним пластическими шарнирами, равны: M1 = RsAs1z1; M2 = RsAs2z2, где z1 и z2 — плечи внутренней пары в опорном и пролетном сечениях. Используя условие (9.13), при одинаковом армировании обоих опорных сечений получим
где As1 (As2) — площадь арматуры в опорном (пролетном) пластическом шарнире в пределах одной панели.
При сплошном загружении безбалочного перекрытия каждая панель разделяется пластическими шарнирами на четыре звена, поворачивающихся вокруг опорных линейных пластических шарниров, оси которых расположены в зоне капителей, обычно под углом 45° к рядам колонн (рис. 9.10, е).
Расчетное уравнение для квадратной панели
где a1 — катет прямоугольного треугольника, отламывающегося от колонны, a1 = (0,08...0,12)l.
Задаваясь соотношением площадей опорной As1 и пролетной As2 арматуры [12], получают в уравнениях (9.27) и (9.28) только по одному неизвестному.
Расчет сборных безбалочных перекрытий допускается приближенным методом. В этом случае надколонные панели рассматривают как неразрезные балки, соединенные с капителями, пролетные панели — как плиты, опертые по контуру. Изгибающий момент в пролетной квадратной плите, учитывая частичное защемление в контурных ребрах:
где q — нагрузка на 1 м2 плиты, q=g+v.
Опорные и пролетные моменты надколонных панелей определяют как для неразрезных балок с учетом перераспределения усилий:
где q — равномерно распределенная приведенная нагрузка на 1 м длины надколонной панели; l0 — расчетный пролет панели, принимаемый равным расстоянию в свету между краями капителей, умноженному на 1,05.
Капители рассчитывают в обоих направлениях как консоли на нагрузку от опорных реакций и моментов надколонных плит. Рабочую арматуру укладывают по верху капители, стенки капители армируют конструктивно.
ВОПРОСЫ ДЛЯ САМОПРОВЕРНКИ:
?1. Классификация плоских железобетонных перекрытий по конструктивной схеме и способу возведения.
2. Компоновка конструктивной схемы сборного балочного перекрытия.
3. Типы сборных железобетонных панелей (по форме поперечного сечения), их основные размеры.
4. Вычертите схемы армирования сборных панелей перекрытий и расскажите о назначении каждого вида арматуры.
5. Какова последовательность расчета панелей перекрытий?
6. Как производится расчет полки ребристой панели на местный изгиб?
7. Расчетная схема ригеля сборных перекрытий в зданиях с полным и неполным каркасом.
8. Основные положения и достоинства метода расчета железобетонных конструкций с учетом перераспределения усилий.
9. Какова последовательность расчета ригеля?
10. Изобразите систему армирования ригеля и объясните ее.
11. Начертите конструкции применяемых стыков ригелей с колоннами. Охарактеризуйте их достоинства и недостатки.
12. Особенности расчета стыков с обетонированием и без обетонирования. 13. Расчет консоли колонны.
14. Компоновка конструктивной схемы монолитного балочного перекрытия. 15. Особенности работы балочных плит и плит, опертых по контуру.
16. Расчет балочных плит.
17. Схемы армирования монолитных балочных плит.
18. Расчетная схема второстепенной балки монолитного балочного перекрытия.
19. Определение усилий во второстепенной балке.
20. Расчет сечений второстепенной балки на опоре и в пролете.
21. Начертите схему армирования второстепенной балки и объясните назначение каждого вида арматуры.
22. Расчетная схема главной балки монолитного балочного перекрытия. Схема приложения нагрузок.
23. Особенности расчета и конструирования главных балок монолитных балочных перекрытий.
24. Разновидности монолитных перекрытий с плитами, опертыми по контуру. 25. Конструирование плит, опертых по контуру.
26. Методы, применяемые для расчета плит, опертых по контуру.
27. Расчет плит, опертых по контуру, методом предельного равновесия.
28. Расчет балок перекрытий с плитами, опертыми по контуру.
29. Достоинства и область применения безбалочных перекрытий.
30. Конструкции сборных безбалочных перекрытий.
31. Методы расчета сборных безбалочных перекрытий.
32. Конструкции монолитных безбалочных перекрытий. Схема армирования. 33. Инженерные методы расчета монолитных безбалочных перекрытий.
studopedya.ru
19. Монолитные безбалочные перекрытия. Конструктивные решения и расчет на полосовую и сплошную нагрузку.
По контуру здания безбалочная плита может опираться на несущие стены
Безбалочное монолитное перекрытие представляет собой сплошную плиту, опертую непосредственно на колонны с капителями). Устройство капителей вызывается конструктивными соображениями, с тем чтобы создать достаточную жесткость в месте сопряжения монолитной плиты с колонной, обеспечить прочность плиты на продавливание по периметру капители, уменьшить расчетный пролет безбалочной плиты и более равномерно распределить моменты по ее ширине.
Безбалочные перекрытия проектируют с квадратной или прямоугольной равнопролетной сеткой колонн
капители трех типов: тип I — при легких нагрузках, типы II и Ш — при тяжелых нагрузках. В капителях всех трех типов размер между пересечениями напряжений скосов с нижней поверхностью плиты принят исходя из распределения опорного давления в бетоне под углом 45°. Толщину монолитной безбалочной плиты находят из условия достаточной ее жесткости h=1/32...1/35h3, где h — размер большого пролета при прямоугольной сетке колонн; Безбалочное перекрытие рассчитывают по методу предельного равновесия.
для безбалочной плиты опасными (расчетными) за-гружениями являются: полосовая нагрузка через протет и сплошная по всей площади. При этих загружениях возможны две схемы расположения линейных пластических шарниров плиты.
При сплошном загружении безбалочного перекрытия в средних панелях возникают взаимно перпендикулярные и параллельные рядам колонн линейные пластические шарниры с раскрытием трещин внизу; при этом каждая панель делится пластическими шарнирами на четыре звена,
При загружении полосовой нагрузкой для случая-излома отдельной полосы с образованием двух звеньев, соединенных тремя линейными шарнирами, среднюю панель рассчитывают из условия, что суммы опорного и пролетного моментов, воспринимаемых сечением плиты в пластических шарнирах равны балочному моменту плиты шириной h3 и пролетом
При сплошном загружении квадратной панели, одинаково армированной в обоих направлениях As=As1 = As2
Монолитную безбалочную плиту армируют рул нии-ми или плоскими сварными сетками. Пролетные моменты воспринимаются сетками, уложенными внизу, а опорные моменты — сетками, уложенными вверху.
20. Конструирование монолитных безбалочных перекрытий.
По контуру здания безбалочная плита может опираться на несущие стены
Безбалочное монолитное перекрытие представляет собой сплошную плиту, опертую непосредственно на колонны с капителями). Устройство капителей вызывается конструктивными соображениями, с тем чтобы создать достаточную жесткость в месте сопряжения монолитной плиты с колонной, обеспечить прочность плиты на продавливание по периметру капители, уменьшить расчетный пролет безбалочной плиты и более равномерно распределить моменты по ее ширине.
Безбалочные перекрытия проектируют с квадратной или прямоугольной равнопролетной сеткой колонн
капители трех типов тип I — при легких нагрузках, типы II и Ш — при тяжелых нагрузках. В капителях всех трех типов размер между пересечениями напряжений скосов с нижней поверхностью плиты принят исходя из распределения опорного давления в бетоне под углом 45°. Толщину монолитной безбалочной плиты находят из условия достаточной ее жесткости t=1/32...1/35h3, где h — размер большого пролета при прямоугольной сетке колонн.
studfiles.net
2. Конструкции сборно-монолитных перекрытий
При пролетах до 9 м возможны перекрытия с предварительно напряженными элементами, которые имеют вид железобетонной доски и служат остовом растянутой зоны балки, снабженной арматурой (рис. XI.32). На эти элементы устанавливают корытной формы армированные элементы, а по ним, как по опалубной форме, укладывают монолитный бетон. В неразрезных перекрытиях
описанного типа над опорами устанавливают дополнительную арматуру.
Конструкция сборно-монолитного перекрытия, в котором объем монолитного бетона, составляет 30 % общего бетона в перекрытии (рис. XI.33), образована из сборных предварительно напряженных досок и панелей корытной формы.
Бетон замоноличивания укладывают в пазы, образованные между боковыми гранями смежных панелей. Неразрезность главной и второстепенных балок достигается укладкой на монтаже опорной арматуры. Для лучшей связи между сборным и монолитным бетоном из железобетонной доски — днища главной балки — выпущены хомуты.
Сборно-монолитные ребристые перекрытия рассчитывают с учетом перераспределения моментов, что дает возможность уменьшить количество опорной арматуры, укладываемой на монтаже. Возможность выравнивания моментов для неразрезных сборно-монолитных элементов проверена специальными опытами.
§ XI.6. Безбалочные перекрытия
Безбалочные сборные перекрытия
Безбалочное сборное перекрытие представляет собой систему сборных панелей, опертых непосредственно на капители колонн (рис. XI.34). Основное конструктивное назначение капителей в том, чтобы обеспечить жесткое Сопряжение перекрытия с колоннами, уменьшить размер расчетных пролетов панелей и создать опору для панелей. Сетка колонн обычно квадратная размером 6х6м.
Преимущество безбалочных панельных перекрытий в сравнении с балочными — в лучшем использовании объема помещений из-за отсутствия выступающих ребер, облегчении устройства различных производственных проводок и коммуникаций. Благодаря меньшей конструктивной высоте безбалочного перекрытия уменьшается общая высота многоэтажного здания и сокращается расход стеновых материалов.
Для многоэтажных складов, холодильников, мясокомбинатов, а также для других производственных зданий ^большими временными нагрузками применяют преимущественно безбалочные панельные перекрытия. При ременных нагрузках на перекрытия 10 кН/м2и более безбалочные панельные перекрытия экономичнее балочных.
Конструкция сборного безбалочного перекрытия состоит из трех основных элементов: капители, надколонной панели и пролетной панели. Капитель опирается на уширения колонны и воспринимает нагрузку от надколонных панелей, идущих в двух взаимно перпендикулярных направлениях и работающих как балки. В целях создания неразрезности надколонные панели закрепляет поверху сваркой закладных деталей. Пролетная панель опирается по четырем сторонам на надколонные панели, имеющие полки, и работает на изгиб в двух направлениях как плита, опертая по контуру. После сварки закладных деталей панели в сопряжениях замоноличивают.
Безбалочное сборное перекрытие работает подобно ребристому перекрытию с плитами, опертыми по контуру, в котором надколонные панели выполняют роль широких балок. Панели перекрытий выполняют ребристыми (см. рис. XI.34) или пустотными, (рис. XI.35), а капители — полыми или сплошными. Колонны имеют поэтажную разрезку.
Экспериментальные исследования безбалочных перекрытий показали, что надколонные панели в поперечном направлении обладают небольшой деформативностью, и продольная рабочая арматура может в них располагаться по всему поперечному сечению равномерно.
Капители рассчитывают в обоих направлениях на нагрузку от опорных давлений и моментов надколонных плит. Расчетную арматуру укладывают по верху капители, стенки капителей армируют конструктивно. Кроме того, капители рассчитывают на монтажную нагрузку как консоли.
Колонны каркаса рассчитывают на действие продольной сжимающей силы Nот нагрузки на вышележащих этажах и на действие изгибающего момента М от односторонней временной нагрузки на перекрытии.
Пролетный момент квадратной панели определяют с учетом частичного закрепления в контурных ребрах и с учетом податливости опорного контура. Опорные и пролетные моменты надколонных панелей определяют как для неразрезной балки с учетом перераспределения моментов.
здесь q равномерно распределенная приведенная нагрузка на 1 м длины надколонной панели.
Расчетный пролет надколонных панелей принимают равным расстоянию в свету между краями капители, умноженному на 1,05.
Рис. Х1.34. Конструкция безбалочного сборного перекрытия с ребристыми панелями а — общий вид; 6 — конструктивный план и разрезы
Рис. Х1.35. Конструкция безбалочного сборного перекрытия с пустотными панелями
а — конструктивный план и разрез; б — детали капители
studfiles.net
КОНСТРУКТОР - Безбалочные перекрытия
Безбалочные перекрытия
История. В деревянных и стальных конструкциях, собираемых из отдельных элементов, балки являются необходимыми частями конструкций. В бетонных монолитных конструкциях балки как таковые могут отсутствовать, хотя это делает перекрытие более гибкими при той же толщине плит. Без поддерживающих балок колонны имеют тенденцию продавливать плиты перекрытия. Поэтому первые безбалочные перекрытия делались над колоннами, имевшими расширяющуюся вверх часть типа капители. Патент на такую конструкцию впервые был зарегистрирован в США Орлано Норкросом в 1902 году. В 1908 году в Москве по руководством А.Ф.Лолейта было запроектировано и построено четырехэтажное здание склада молочных продуктов с безбалочными перекрытиями.
Увеличение размеров оголовников колонн было характерной чертой этого решения конструкций и поэтому оно было также известно под термином "грибовидные перекрытия".
Методы расчетаРасчет безбалочной плиты по методам теории упругости разрабатывался различными авторами, однако несмотря на математическую строгость, эти методы страдают существенными недостатками и не позволяют реально оценить работу конструкций. Ниже приведены методы расчета безбалочной плиты, разработанные на экспериментальной основе.
Для расчета полагают, что опорные реакции на капителях распределены по треугольнику, а расчетный пролет панели принимают расстоянию между центрами тяжести этих треугольников. Общий суммарный изгибающий момент: M = 1/8 WL(1-2c/3L)(1-2c/3L), где W- полная нагрузка на ячейку перекрытия, L- шаг колонн, с- размер капители. Это уравнение было получено Дж. Р. Никольсом в 1914 году. К 1917 году формула Никольса была принята Объединенной американской комиссией и введена в строительные нормы ACI для проектирования безбалочных перекрытий с капительными колоннами. Более точная методика оценки моментов, основанная на теоретических и экспериментальных исследованиях Вестергарда и Слейтера, появилась в 1925 году. Этот метод был включен в строительные нормы стран всего мира.
У нас данный метод расчета известен, как инструкция ЦНИИПСа 1933 года, разработанная А.А.Гвоздевым и В.И.Мурашевым. Для квадратной панели M0=1/8 WL(1-2c/3L)(1-2c/3L). Для определения моментов в расчетных сечениях и для конструирования арматуры безбалочное перекрытие делят в плане на надколонные и пролетные полосы с шириной каждой полосы, равной половине расстояния между осями колонн в каждом направлении. В каждой полосе возникают положительные и отрицательные моменты, причем в надколонной полосе моменты больше, чем в пролетной полосе. По ширине полосы моменты изменяются по некоторой кривой, но для практического расчета принимают ступенчатое изменение моментов, принимая их постоянными по ширине полосы.
Учитывая возможное перераспределение моментов вследствие пластических деформаций, величины моментов в четырех расчетных сечениях панели плиты определяют с таким расчетом, чтобы сумма их равнялась балочному моменту М0. Для средней панели безбалочного перекрытия принимают:
Надколонная полоса | Опорный момент | М1=0,5М0 |
Пролетный момент | М2=0,2М0 | |
Пролетная полоса | Опорный момент | М3=0,15М0 |
Пролетный момент | М4=0,15М0 | |
Итого | М1 + M2 + М3 + М4 = М0 |
Рис.1 a - схема прогибов безбалочного перекрытия при наличии рандбалок; б - разбивка безбалочного перекрытия на надколонные и пролетные полосы; в - эпюры расчетных моментов в этих полосах; г - схема расположения расчетных моментов.
В крайнем пролете на величину моментов оказывает влияние степень защемления плиты наружными колоннами и наличие полосовой опоры на обвязочной балке или стене. В крайнем пролете расчетные моменты плиты находят из соответствующих моментов средних пролетов путем умножения их на коэффициенты согласно табл.
Моменты | Полосы | |
надколонная | пролетная | |
Опорный момент на первой промежуточной опоре | М5 = aM1 | M7 = aM3 |
Пролетный момент в первом пролете | M6 = bM2 | M8 = bM4 |
Опорный момент на крайней опоре | M8 = gM0 | M9 = gM2 |
Коэффициенты a, b, g определяются по графику в зависимости от соотношения суммы погонных жесткостей верхней и нижней крайних колонн к погонной жесткости плиты.
Распределение моментов по полю безбалочной безкапительной плиты при квадратных и равнопролетных прямоугольных панелях с отношением сторон до 1,33 мало отличается от распределения моментов в обычных безбалочных перекрытиях.
Расчет безбалочных перекрытий с неравными пролетами производится по методу заменяющих рам. В каждом направлении безбалочное перекрытие заменяется многопролетной рамой с ригелем в виде плиты и с колоннами примыкающими к узлу и защемленными на противоположных концах. Ширина ригеля принимается равной полусумме прилегающих пролетов плиты перпендикулярного направления. Расчетная длина ригеля устанавливается с учетом капителей так же, как в равнопролетных перекрытиях; расчетная длина колонн принимается равной L0=Lк-С/2.
Рамы каждого направления расчитываются на полную нагрузку без учета шахматного или полосового расположения полезной нагрузки. Возможность расчета по одной такой схеме загружения обуславливается выравниванием моментов вследствие пластических деформаций.
Полученные из расчета рамы изгибающие моменты ригелей распределяются между надколонными и пролетными полосами следующим образом: а) положительный момент - 45% на пролетную полосу и 55% на надколонную полосу; б) отрицательный момент - 25% на пролетную полосу и 75% на надколонную полосу. В крайних (пристенных) панелях расчетные моменты в направлении края перекрытия определяют согласно табл.2.
Безкапительные перекрытия.Расширенные оголовники колонн впервые были исключены из конструкции Джозефом Ди Стасио в 1940 г. Это уменьшило площадь перекрытия, воспринимающую реакцию колонн, и поэтому было необходимо ввести дополнительную поперечную арматуру для восприятия перерезывающих сил или увеличивать размеры колонн (толщину перекрытий) больше чем требовалось. Для того чтобы отличить плиты перекрытий с бескапительными колоннами от плит с капительными колоннами (flat slab), им было дано специальное название flate plate, назовем в дальнейшем плоское перекрытие.
Безбалочные перекрытия с безкапительными колоннами представляют собой предельно простые конструкции, состоящие из железобетонных плит одинаковой толщины и колонн постоянного сечения. Это упрощает опалубочные работы, а также арматурные работы и бетонирование. Всвязи с тем, что при безкапительных конструкциях колонны имеют постоянное сечение, их легко сопрягать со стенами и перегородками между колоннами. Поэтому они удобны для административных зданий и жилых домов.
Безбалочные перекрытия имеют наименьшую наименьшую конструктивную высоту, ровный и гладкий потолок, дают возможность свободно расположить внутреннее оборудование. Инженерные сети, не встречающие препятствий подвешиваются к плите. В случае необходимости устраивают подшивной потолок.
В безкапительных конструкциях задача ограничения прогибов более сложна, чем в капительных. Из-за общей небольшой толщины перекрытий и отсутствия капителей прогибы плит перекрытий относительно велики. Дополнительные деформации ползучести, по крайней мере, вдвое увеличивают величину упругих прогибов. Эта проблема не была полностью преодолена до конца 50-х годов ХХ века, когда в ряде зданий с бескапительными колоннами обнаружились треснувшие перегородки и раздавленные окна.
Каркас унифицированный безбалочный КУБ. В СССР также проводились разработки безбалочного перекрытия. Впервые плоское перекрытие было применено в 60-х годах для высотной гостиницы во Владивостоке. Шаг колонн 6х6м, плиты 2,8х2,8 с учетом шва замоноличивания 0,2м, соединение плит между собой с применением петлевого стыка. Наиболее сложный узел - примыкания к колонне - решен приваркой закладной коробчатой детали плиты к продольной рабочей арматуре колонны.
К граням коробки приварены арматурные стержни для восприятия скалывающих напряжений, растягивающих усилий от опорных изгибающих моментов и местных растягивающих усилий, вызванных продавливанием.
Такой железобетонный каркас получил название "каркас унифицированный безригельный". Были разработаны модифицированные варианты системы КУБ для различных нагрузок и условий изготовления. Однако широкого применения данные серии не получили.
В настоящее время, когда отброшена идеология индустриализации, широкое распространение получают более экономичные монолитные железобетонные конструкции, которые дают возможность получить более гибкие архитектурно-планировочные решения. Главной проблемой остается отсутствие культуры производства у подрядчика с богатым "совковым" наследием. Наиболее простым в изготовлении является плоское перекрытие. Повышенный расход бетона компенсируется простотой опалубки. В результате стоимость и сроки строительства данных перекрытий ниже традиционных балочных. Как следствие монолитные плоские перекрытия получают массовое распространение.
Однако в отечественной литературе и нормативных документах конструкция плоских перекрытий отсутствует, как класс. Действующие нормы не дают проектировщикам ответы на многие вопросы. Возможно данная ситуация произошла по причине ориентации СССР в строительстве сборный железобетон. В академиях до сих пор обучают студентов советским методам.
В настоящее время имеются следующие документы: Руководство по проектированию железобетонных конструкций с безбалочными перекрытиями, Москва, 1979.Руководство по расчету статически неопределимых железобетонных конструкций, Москва, 1975.
Что же делать проектировщикам. Стремясь обезопасить от рисков каждый проектировщик посвоему завышает расчетные коэффициенты запаса прочности. Широкое распространение получает расчет конструкций с применение программ конечно-элементного анализа. Однако в случае возникновения аварийных ситуаций вся ответственность лежат на конструкторе. Разработчики программного обеспечения, даже предоставляя соответствующие сертификаты, не берут на себя ответственности по полученным расчетам.
Кроме того за редким исключением программы могут корректно расчитывать железобетонные элементы по предельным состояниям 2-й группы (прогибы) с учетом реального армирования. Слепая вера в результаты расчетов программы могут привести к фатальным последствиям. Из имеющегося строительного програмного обеспечения я бы рекомендовал Robot Millennium. Однако, для использования любой программы нужно в первую очерень инженерная интуиция, а только затем умение работать с программой и знание ее возможностей и области применения. Любые результаты машинных расчетов необходимо проверять грубыми ручными способами, чтобы избежать значительных ошибок.
Конструирование. Проблемой конструирования плоских перекрытий является зона опирания плиты на колонны. В данном месте возникает максимальный изгибаемый момент и поперечная сила. Если с моментом все относительно понятно, то обеспечить восприятие продавливания бывает достаточно сложно при стандартных габаритах колонн и толщине перекрытий. Обеспечить восприятие продавливания можно за счет дополнительного армирования, увеличения толщины перекрытия или увеличения периметра колонны. Увеличить колонну можно не только увеличив ее сечение. Если вытянуть колону (сделать прямоугольной), то при увеличении периметра, ее сечение может остаться прежним. Такую колонну проще разместить в составе межквартирных перегородок.
Также возможно устройство металлической капители в теле плиты. На фотографии приведена металлической капители гостиницы "Виру" в Талине (шаг колонн 8х8 м, толщина перекрытия 27 см).
Еще одно "тонкое" место - опирание наружных ненесущих кирпичных стен. Данный участок часто требует усиления. Устройство обвязочной балки решает проблему, но усложняет конструкцию опалубки. Можно уменьшить шаг колонн по наружному контуру. Однако сложно сказать, какое из двух зол меньше. Как вариант предлагается введение сплошной металлической закладной из швеллера по наружному краю в дополнение к усиленному армированию.
Разновидностью безбалочных перекрытий можно считать часторебристые перекрытия, где при больших пролетах и значительной толщине плиты облегчение конструкции достигается установкой на плоской опалубке полых вкладышей из картона, асбестоцемента, фанеры или других материалов.
И на последок, какой же все таки оптимальный пролет для безбалочных перекрытий? Наиболее экономичным является небольшой шаг колонн, порядка 4,5-4,8м, при этом для жилья можно получить практически любую планировку. Увеличение числа колонн не приводит к существенному возрастанию стоимости, в то время как использование более тонких плит перекрытия обеспечивает значительное ее снижение. По зарубежной литературе максимальный шаг колонн для плоских перекрытий составляет до 7,5м. Но часто шаг колонн определяется по архитектурным и технологическим соображениям. Для устройства гаражей в подвальной части здания шаг колонн приходится увеличивать.
В моей практике наибольший применяемый пролет для плоских перекрытий составлял 6,0 м, и для перекрытий с капителями 8,0м. Стоит обратить внимание на рациональность использования разгружающих консолей вылетом около 0,2L или уменьшение крайних пролетов.
Литература.1. Железобетонные конструкции, А.Ивянский, 19612. Железобетонные конструкции, В.Мурашов, Э.Сигалов, В.Байков, 1962.3. Строительная наука XIX-XX вв, Генри Дж.Коуэн, 19824. Конструкции высотных зданий, Ю.Козак, 1986.5. Конструкции высотных зданий, В.Шуллер, 1979.6. Проектирование жилых зданий, Дж.Максаи, Ю.Холланд, 1979.7. Возведение многоэтажных зданий, У.Палл, К.Эхала
konstr.narod.ru