Сущьность бетонов в зимних условиях. Критическая прочность бетона при зимнем бетонировании
Технология бетонных работ в зимних условиях
Физические процессы и определяющие положения
Понятие «зимние условия» в технологии монолитного бетона и железобетона несколько отличается от общепринятого - календарного. Зимние условия начинаются, когда среднесуточная температура наружного воздуха снижается до +5°С, а в течение суток имеет место падение температуры ниже 0°С.
При отрицательных температурах не прореагировавшая с цементом вода переходит в лед и не вступает в химическое соединение с цементом. В результате этого прекращается реакция гидратации и, следовательно, бетон не твердеет. Одновременно в бетоне развиваются значительные силы внутреннего давления, вызванные увеличением (примерно на 9%) объема воды при переходе ее в лед. При раннем замораживании бетона его неокрепшая структура не может противостоять этим силам и нарушается. При последующем оттаивании замерзшая вода вновь превращается в жидкость и процесс гидратации цемента возобновляется, однако разрушенные структурные связи в бетоне полностью не восстанавливаются.
Замораживание свежеуложенного бетона сопровождается также образованием вокруг арматуры и зерен заполнителя ледяных пленок, которые благодаря притоку воды из менее охлажденных зон бетона увеличиваются в объеме и отжимают цементное тесто от арматуры и заполнителя.
Все эти процессы значительно снижают прочность бетона и его сцепление с арматурой, а также уменьшает его плотность, стойкость и долговечность.
Если бетон до замерзания приобретает определенную начальную прочность, то все упомянутые выше процессы не оказывают на него неблагоприятного воздействия. Минимальную прочность, при которой замораживание для бетона не опасно, называют критической.
Величина нормируемой критической прочности зависит от класса бетона, вида и условий эксплуатации конструкции и составляет: для бетонных и железобетонных конструкций с ненапрягаемой арматурой - 50% проектной прочности для В7,5...В10, 40% для В12,5... В25 и 30% для В 30 и выше, для конструкций с предварительно напрягаемой арматурой - 80% проектной прочности, для конструкций, подвергающихся попеременному замораживанию и оттаиванию или расположенных в зоне сезонного оттаивания веч-номерзлых грунтов - 70% проектной прочности, для конструкций, нагружаемых расчетной нагрузкой - 100% проектной прочности.
Продолжительность твердения бетона и его конечные свойства в значительной степени зависят от температурных условий, в которых выдерживают бетон. По мере повышения температурыувеличивается активность воды, содержащейся в бетонной смеси, ускоряется процесс ее взаимодействия с минералами цементного клинкера, интенсифицируются процессы формирования коагуляционной и кристаллической структуры бетона. При снижении температуры, наоборот, все эти процессы затормаживаются и твердение бетона замедляется.
Поэтому при бетонировании в зимних условиях необходимо создать и поддерживать такие температурно-влажностные условия, при которых бетон твердеет до приобретения или критической, или заданной прочности в минимальные сроки с наименьшими трудовыми затратами. Для этого применяют специальные способы приготовления, подачи, укладки и выдерживания бетона.
При приготовлении бетонной смеси в зимних условиях ее температуру повышают до 35...40С путем подогрева заполнителей и воды. Заполнители подогревают до 60С паровыми регистрами, во вращающихся барабанах, в установках с продувкой дымовых газов через слой заполнителя, горячей водой. Воду подогревают в бойлерах или водогрейных котлах до 90С. Подогрев цемента запрещается.
При приготовлении подогретой бетонной смеси применяют иной порядок загрузки составляющих в бетоносмеситель. В летних условиях в барабан смесителя, предварительно заполненного водой, все сухие компоненты загружают одновременно. Зимой во избежание «заваривания» цемента в барабан смесителя вначале заливают воду и загружают крупный заполнитель, а затем после нескольких оборотов барабана - песок и цемент. Общую продолжительность перемешивания в зимних условиях увеличивают в 1,2... 1,5 раза. Бетонную смесь транспортируют в закрытой утепленной и прогретой перед началом работы таре (бадьи, кузова машин). Автомашиныимеют двойное днище, в полость которого поступают отработанные газы мотора, что предотвращает теплопотери. Бетонную смесь следует транспортировать от места приготовления до места укладки по возможности быстрее и без перегрузок. Места погрузки и выгрузки должны быть защищены от ветра, а средства подачи бетонной смеси в конструкции (хоботы, виброхоботы и др.) утеплены.
Состояние основания, на котором укладывают бетонную смесь, а также способ укладки должны исключать возможность ее замерзания в стыке с основанием и деформации основания при укладке бетона на пучинистые фунты. Для этого основание отогревают до положительных температур и предохраняют от замерзания до приобретения вновь уложенным бетоном требуемой прочности.
Опалубку и арматуру до бетонирования очищают от снега и наледи, арматуру диаметром более 25 мм, а также арматуру из жестких прокатных профилей и крупные металлические закладные детали при температуре ниже - 10°С отогревают до положительной температуры.
Бетонирование следует вести непрерывно и высокими темпами, при этом ранее уложенный слой бетона должен быть перекрыт до того, как в нем температура будет ниже предусмотренной.
Строительное производство располагает обширным арсеналом эффективных и экономичных методов выдерживания бетона в зимних условиях, позволяющих обеспечить высокое качество конструкций. Эти методы можно разделить на три группы: метод, предусматривающий использование начального теплосодержания, внесенного в бетонную смесь при ее приготовлении или перед укладкой в конструкцию, и тепловыделение цемента, сопровождающее твердение бетона - так называемый метод «термоса», методы, основанные на искусственном прогреве бетона, уложенного в конструкцию - электропрогрев, контактный, индукционный и инфракрасный нагрев, конвективный обогрев, методы, использующие эффект понижения эвтектической точки воды в бетоне с помощью специальных противоморозных химических добавок.
Указанные методы можно комбинировать. Выбор того или иного метода зависит от вида и массивности конструкции, вида, состава и требуемой прочности бетона, метеорологических условий производства работ, энергетической оснащенности строительной площадки и т. д.
Метод «термоса»
Технологическая сущность метода «термоса» заключается в том, что имеющая положительную температуру (обычно в пределах 15... 30°С) бетонная смесь укладывается в утепленную опалубку. В результате этого бетон конструкции набирает заданную прочность за счет начального теплосодержания и экзотермического тепловыделения цемента за время остывания до 0°С.
В процессе твердений бетона выделяется экзотермическая теплота, количественно зависящая от вида применяемого цемента и температуры выдерживания.
Наибольшим экзотермическим тепловыделением обладают высокомарочные и быстротвердеющие портландцементы. Экзотермия бетона обеспечивает существенный вклад в теплосодержание конструкции, выдерживаемой методом «термоса».
Поэтому при применении метода «термоса» рекомендуется применять бетонную смесь на высокоэкзотермичных портландских и быстротвердеющих цементах, укладывать с повышенной начальной температурой и тщательно утеплять.
Бетонирование методом «Термос с добавками-ускорителями»
Некоторые химические вещества (хлористый кальций СаСl, углекислый калий - поташ К2СО3, нитрат натрия NaNO3 и др.), введенные в бетон внезначительных количествах (до 2% от массы цемента), оказывают следу ющее действие на процесс твердения: эти добавки ускоряют процесс твердения в начальный период выдерживания бетона. Так, бетон с добавкой 2%-ного хлористого кальция от массы цемента уже на третий день достигает прочности, в 1,6 раза большей, чем бетон того же состава, но без добавки. Введение в бетон добавок-ускорителей, являющихся одновременно и противоморозными добавками, в указанных количествах понижает температуру замерзания до -3°С, увеличивая тем самым продолжительность остывания бетона, что также способствует приобретению бетоном большей прочности.
Бетоны с добавками-ускорителями готовят на подогретых заполнителях и горячей воде. При этом температура бетонной смеси на выходе из смесителя колеблется в пределах 25...35°С, снижаясь к моменту укладки до 20°С. Такие бетоны применяют при температуре наружного воздуха -15... -20°С. Укладывают их в утепленную опалубку и закрывают слоем теплоизоляции. Твердение бетона происходит в результате термосного выдерживания в сочетании с положительным воздействием химических добавок. Этот способ является простым и достаточно экономичным, позволяет применять метод «термоса» для конструкций с Мп
Бетонирование «Горячий термос»
Заключается в кратковременном разогреве бетонной смеси до температуры 60... 80°С, уплотнении ее в горячем состоянии и термосном выдерживании или с дополнительным обогревом.
В условиях строительной площадки разогрев бетонной смеси осуществляют, как правило, электрическим током. Для этого порцию бетонной смеси с помощью электродов включают в электрическую цепь переменного тока в качестве сопротивления.
Таким образом, как выделяемая мощность, так и количество выделяемой за промежуток времени теплоты зависят от подводимого к электродам напряжения (прямая пропорциональность) и омическогосопротивления профеваемой бетонной смеси (обратная пропорциональность).
В свою очередь, омическое сопротивление является функцией геометрических параметров плоских электродов, расстояния между электродами и удельного омического сопротивления бетонной смеси.
Электроразофев бетонной смеси осуществляют при напряжении тока 380 и реже 220 В. Для организации электроразофева на строительной площадке оборудуют пост с трансформатором (напряжение на низкой стороне 380 или 220 В), пультом управления и распределительным щитом.
Электроразогрев бетонной смеси осуществляют в основном в бадьях или в кузовах автосамосвалов.
В первом случае приготовленную смесь (на бетонном заводе), имеющую температуру 5...15°С, доставляют автосамосвалами на строительную площадку, выгружают в электробадьи, разогревают до 70... 80°С и укладывают в конструкцию. Чаще всего применяют обычные бадьи (туфельки) с тремя электродами из стали толщиной 5 мм, к которым с помощью кабельных разъемов подключают провода (или жилы кабелей) питающей сети. Для равномерного распределения бетонной смеси между электродами при загрузке бадьи и лучшей выгрузке разогретой смеси в конструкцию на корпусе бадьи установлен вибратор.
Во втором случае приготовленную на бетонном заводе смесь доставляют на строительную площадку в кузове автосамосвала. Автосамосвал въезжает на пост разогрева и останавливается под рамой с электродами. При работающем вибраторе электроды опускают в бетонную смесь и подают напряжение. Разогрев ведут в течение 10... 15 мин до температуры смеси на быстротвердеющих портландцементах 60°С, на портландцементах 70°С, на шлакопортландцементах 80°С.
Для разогрева смеси до столь высоких температур за короткий промежуток времени требуются большие электрические мощности. Так, для разогрева 1 м смеси до 60°С за 15 мин требуется 240 кВт, а за 10 мин - 360 кВт установленной мощности.
Искусственный прогрев и нагрев бетона
Сущность метода искусственного прогрева и нагрева заключается в повышении температуры уложенного бетона до максимально допустимой и поддержании ее в течение времени, за которое бетон набирает критическую или заданную прочность.
Искусственный прогрев и нагрев бетона применяют при бетонировании конструкций с Мп > 10, а также и более массивных, если в последних невозможно получить в установленные сроки заданную прочность при выдерживании только способом термоса.
Физическая сущность электропрогрева (электродного прогрева) идентична рассмотренному выше способу электроразогрева бетонной смеси, т. е. используется теплота, выделяемая в уложенном бетоне при пропуске через него электрического тока.
Образующаяся теплота расходуется на нагрев бетона и опалубки до заданной температуры и возмещение теплопотерь в окружающую среду, происходящих в процессе выдерживания. Температура бетона при электропрогреве определяется величиной вьщеляемой в бетоне электрической мощности, которая должна назначаться в зависимости от выбранного режима термообработки и величины теплопотерь, имеющих место при электропрогреве на морозе.
Для подведения электрической энергии к бетону используют различные электроды: пластинчатые, полосовые, стержневые и струнные.
К конструкциям электродов и схемам их размещения предъявляются следующие основные требования: мощность, выделяемая в бетоне при электропрогреве, должна соответствовать мощности, требуемой по тепловому расчету, электрическое и, следовательно, температурное поля должны быть по возможности равномерными, электроды следует располагать по возможности снаружи прогреваемой конструкции для обеспечения минимального расхода металла, установку электродов и присоединение к ним проводов необходимо производить до начала укладки бетонной смеси (при использовании наружных электродов).
В наибольшей степени удовлетворяют изложенным требованиям пластинчатые электроды.
Пластинчатые электроды принадлежат к разряду поверхностных и представляют собой пластины из кровельного железа или стали, нашиваемые на внутреннюю, примыкающую к бетону поверхность опалубки и подключаемые к разноименным фазам питающей сети. В результате токообмена между противолежащими электродами весь объем конструкции нагревается. С помощью пластичнатых электродов прогревают слабоармированные конструкции правильной формы небольших размеров (колонны, балки, стены и др.).
Полосовые электроды изготовляют из стальных полос шириной 20...50 мм и так же, как пластинчатые электроды, нашивают на внутреннюю поверхность опалубки.
Токообмен зависит от схемы присоединения полосовых электродов к фазам питающей сети. При присоединении противолежа щих электродов к разноименным фазам питающей сети токообмен происходит между противоположными гранями конструкции и в тепловыделение вовлекается вся масса бетона. При присоединении к разноименным фазам соседних электродов токообмен происходит между ними. При этом 90% всей подводимой энергии рассеивается в периферийных слоях толщиной, равной половине расстояния между электродами. В результате периферийные слои нагреваются за счет джоулевой теплоты. Центральные же слои (так называемое «ядро» бетона) твердеют за счет начального теплосодержания, экзотермии цемента и частично за счет притока теплоты от нагреваемых периферийных слоев. Первую схему применяют для прогрева слабоармированных конструкций толщиной не более 50 см. Периферийный электропрогрев применяют для конструкций любой массивности.
Полосовые электроды устанавливают по одну сторону конструк ции. При этом к разноименным фазам питающей сети присоединяют соседние электроды. В результате реализуется периферийный электропрогрев.
Одностороннее размещение полосовых электродов применяют при электропрогреве плит, стен, полов и других конструкций толщиной не более 20 см.
При сложной конфигурации бетонируемых конструкций при меняют стержневые электроды - арматурные прутки диаметром 6... 12 мм, устанавливаемые в тело бетона.
Наиболее целесообразно использовать стержневые электроды р виде плоских электродных групп. В этом случае обеспечивается более равномерное температурное поле в бетоне.
При электропрогреве бетонных элементов малого сечения и значительной протяженности (например, бетонных стыков шириной до 3... 4 см) применяют одиночные стержневые электроды.
При бетонировании горизонтально расположенных бетонных или имеющих большой защитный слой железобетонных конструкций используют плавающие электроды - арматурные стержни 6... 12 мм, втапливаемые в поверхность.
Струнные электроды применяют для прогрева конструкций, длина которых во много раз больше размеров их поперечного сечения (колонны, балки, прогоны и т. п.). Струнные электроды устанавливают по центру конструкции и подключают к одной фазе, а металлическую опалубку (или деревянную с обшивкой палубы кровельной сталью) - к другой. В отдельных случаях в качестве другого электрода может быть использована рабочая арматура.
Количество энергии, выделяемой в бетоне в единицу времени, а следовательно, и температурный режим электропрогрева зависят от вида и размеров электродов, схемы их размещения в конструкции, расстояний между ними и схемы подключения к питающей сети. При этом параметром, допускающим произвольное варьирование, чаще всего является подводимое напряжение. Выделяемая электрическая мощность в зависимости от перечисленных выше параметров рассчитывается по формулам.
Ток на электроды от источника питания подается через трансформаторы и распределительные устройства.
В качестве магистральных и коммутационных проводов применяют изолированные провода с медной или алюминиевой жилой, сечение которых подбирают из условия пропуска через них расчетной силы тока.
Перед включением напряжения проверяют правильность установки электродов, качество контактов на электродах и отсутствие их замыкания на арматуру.
Электропрогрев ведут на пониженных напряжениях в пределах 50... 127 В. Осредненно удельный расход электроэнергии составляет 60... 80 кВт/ч на 1 м3 железобетона.
Контактный (кондуктивный) нагрев. При данном методе используется теплота, выделяемая в проводнике при прохождении по нему электрического тока. Затем эта теплота передается контактным путем поверхностям конструкции. Передача теплоты в самом бетоне конструкции происходит путем теплопроводности. Для контактного нагрева бетона преимущественно применяют термоактивные (греющие) опалубки и термоактивные гибкие покрытия (ТАГП).
Греющая опалубка имеет палубу из металлического листа или водостойкой фанеры, с тыльной стороны которой расположены электрические нагревательные элементы. В современных опалубках в качестве нагревателей применяют греющие провода и кабели, сетчатые нагреватели, углеродные ленточные нагреватели, токопроводящие покрытия и др. Наиболее эффективно применение кабелей, которые состоят из константановой проволоки диаметром 0,7... 0,8 мм, помещенной в термостойкую изоляцию. Поверхность изоляции защищена от механических повреждений металлическим защитным чулком. Для обеспечения равномерного теплового потока кабель размещают на расстоянии 10... 15 см ветвь от ветви.
Сетчатые нагреватели (полоса сетки из металла) изолируют от палубы прокладкой асбестового листа, а с тыльной стороны опалубочного щита - также асбестовым листом и покрывают теплоизоляцией. Для создания электрической цепи отдельные полосы сетчатого нагревателя соединяют между собой разводящими шинами.
Углеродные ленточные нагреватели наклеивают специальными клеями на палубу щита. Для обеспечения прочного контакта с коммутирующими проводами концы лент подвергают меднению.
В греющую опалубку может быть переоборудована любая инвентарная с палубой из стали или фанеры. В зависимости от конкретных условий (темпа нагрева, температуры окружающей среды, мощности тепловой защиты тыльной части опалубки) потребная удельная мощность может колебаться от 0,5 до 2 кВ А/м2. Греющую опалубку применяют при возведении тонкостенных и среднемассивных конструкций, а также при замоноличивании узлов сборных железобетонных элементов.
Термоактивное покрытие (ТРАП) - легкое, гибкое устройство с углеродными ленточными нагревателями или греющими проводами, обеспечивающие нагрев до 50°С. Основой покрытия является стеклохолст, к которому крепят нагреватели. Для теплоизоляции применяют штапельное стекловолокно с экранированием слоем из фольги. В качестве гидроизоляции используют прорезиненную ткань.
Гибкое покрытие можно изготовлять различного размера. Для крепления отдельных покрытий между собой предусмотрены отверстия для пропуска тесьмы или зажимов. Покрытие можно располагать на вертикальных, горизонтальных и наклонных поверхностях конструкций. По окончании работы с покрытием на одном месте его снимают, очищают и для удобства транспортировки сворачивают в рулон. Наиболее эффективно применять ТРАП при возведенииплит перекрытий и покрытий, устройстве подготовок под полы и др. ТРАП изготовляют с удельной электрической мощностью 0,25... 1 кВ-А/м2.
При инфакрасном нагреве используют способность инфракрасных лучей поглощаться телом и трансформироваться в тепловую энергию, что повышает теплосодержание этого тела.
Генерируют инфракрасное излучение путем нагрева твердых тел. В промышленности для этих целей применяют инфракрасные лучи с длиной волны 0,76... 6 мкм, при этом максимальным потоком волн данного спектра обладают тела с температурой излучающей поверхности 300...2200°С.
Теплота от источника инфракрасных лучей к нагреваемому телу передается мгновенно, без участия какого-либо переносчика теплоты. Поглощаясь поверхностями облучения, инфракрасные лучи превращаются в тепловую энергию. От нагретых таким образом поверхностных слоев тело прогревается за счет собственной теплопроводности.
Для бетонных работ в качестве генераторов инфракрасного излучения применяют трубчатые металлические и кварцевые излучатели. Для создания направленного лучистого потока излучатели заключают в плоские или параболические рефлекторы (обычно из алюминия).
Инфракрасный нагрев применяют при следующих технологических процессах: отогреве арматуры, промороженных оснований и бетонных поверхностей, тепловой защите укладываемого бетона, ускорении твердения бетона при устройстве междуэтажных перекрытий, возведении стен и других элементов в деревянной, металлической или конструктивной опалубке, высотных сооружений в скользящей опалубке (элеваторы, силосы и т. п.).
Электроэнергия для инфракрасных установок поступает обычно от трансформаторной подстанции, от которой к месту производства работ прокладывают низковольтный кабельный фидер, питающий распределительный шкаф. От последнего электроэнергию подают по кабельным линиям к отдельным инфракрасным установкам.Бетон обрабатывают инфракрасными лучами при наличии автоматических устройств, обеспечивающих заданные температурные и временные параметры путем периодического включения-выключения инфракрасных установок.
При индукционном нагреве бетона используют теплоту, выделяемую в арматуре или стальной опалубке, находящихся в электромагнитном поле катушки-индуктора, по которой протекает переменный электрический ток. Для этого по наружной поверхности опалубки последовательными витками укладывается изолированный провод-индуктор. Переменный электрический ток, проходя через индуктор, создает переменное электромагнитное поле. Электромагнитная индукция вызывает в находящемся в этом поле металле (арматуре, стальной опалубке) вихревые токи, в результате чего арматура (стальная опалубка) нагревается и от нее (кондуктивно) нагревается бетон.
Индукционный метод применяют для отогрева ранее выполненных и прогрева возводимых каркасных железобетонных конструкций, бетонируемых в любой опалубке и при любой температуре наружного воздуха.
stroyrubrika.ru
Как происходит зимнее бетонирование
Мы живем в стране, которая имеет различные климатические зоны. Но большинство территорий находятся в зоне холодов. В связи с тем, что работы ведутся в разное время года, следует учитывать особенности строительства в зимнее и летнее время. Переход на «зимние условия» начинается, когда среднесуточная температура снижается до + 5 градусов, а её колебания доходят до минусовых значений.Как известно, при температуре ниже нуля вода переходит в другое агрегатное состояние – лед. В результате, не происходит ее смешивание с другим компонентом бетона – цементом. Прекращается химическая реакция гидратации, и бетон не затвердевает. Кроме того, при образовании льда развиваются высокие силы внутреннего давления, которые приводят к резкому снижению прочности бетона. При замораживании происходит нарушение связи бетона с арматурой.
Поэтому главная задача при проведении работ в зимнее время состоит в том, чтобы бетон приобрёл необходимую прочность до начала процесса замерзания. Минимальная прочность, при которой замораживание для бетона не опасно, называется критической.Критическая прочность может составлять от 30 до 100%., в зависимости от класса бетона, вида и эксплуатации конструкций, климатических условий.
Процесс отвердевания бетона зависит прежде всего от температуры раствора. При повышении температуры происходит увеличение интенсивности физико-химических реакций и ускорение процесса отвердевания. При понижении – соответственно, наоборот. Поэтому, при бетонировании в зимнее время необходимо создать определенные условия, а это - поддержание температуры и влажности в оптимальных пределах, на всех стадиях проведения работ: приготовления раствора, его транспортировка, укладка и выдерживание бетона до приобретения критической прочности.
Методы бетонирования в зимних условиях включают в себя также использование добавок-ускорителей, которые являются одновременно «противоморозными» добавками. Это химические соединения, такие как хлористый кальций, поташ – углекислый калий, нитрат натрия и др. Они вводятся в раствор во время приготовления в очень незначительных количествах (не более 2%), но позволяют значительно ускорить процесс твердения в период выдержки бетона. Кроме того, они позволяют снизить температуру замерзания, что увеличивает продолжительность остывания смеси и приобретения ею большей прочности.
Для создания необходимой температуры бетонной смеси производят подогрев составных компонентов бетона: гравий, щебень, песок, а также воду. Желательно, чтобы смесь, подготовленная к заливке, была не выше 30 градусов. Заливать её необходимо в прогретую и утеплённую опалубку, а сверху накрыть теплоизолирующим материалом (плёнка, минеральная вата, опилки и др.) Вследствие этого, затвердевание бетона до необходимой прочности происходит за счёт изначального тепла и экзотермического тепловыделения цемента в процессе остывания. Такой способ называется методом «термоса». Кроме того, для поддержания оптимальной температуры раствора можно использовать и такой метод, как электроподогрев. Это и введение специальных электродов непосредственно в раствор с пропусканием через них переменного тока, и нагревание смеси в специальных емкостях, и использование, так называемой, «греющей» опалубки, и воздействие источниками инфракрасного излучения.Также для прогрева бетона, уложенного в опалубку, используют, так называемые, тепляки (полог, палатка), которые сооружаются на время бетонирования. Во внутреннее пространство подается горячий воздух тепловыми пушками.
Таким образом, вы получили краткую информацию об особенностях «зимнего» бетонирования в сравнении с календарным.
nerudr.ru
Сущьность бетонов в зимних условиях
Возведение монолитных железобетонных сооружений в настоящее время осуществляют круглогодично. Но при этом бетонирование в зимних условиях имеет существенные особенности. Понятие «зимние условия» при производстве бетонных работ отличается от календарного. Принято считать, что зимние условия для конкретной стройки начинаются тогда, когда среднесуточная температура наружного воздуха снижается до +50С, а в течение суток наблюдается ее падение ниже нуля. При температуре ниже 0 0С в бетоне прекращаются процессы гидратации, т.е. взаимодействие минералов цемента с водой. При этом твердение бетона приостанавливается, так как бетон замерзает, превращаясь в монолит, прочность которого обусловливается силами смерзания. В бетоне появляются внутренние напряжения, которые вызываются увеличением объема свободной воды примерно на 9% при замерзании. Эти напряжения разрывают неокрепшие адгезионные связи между отдельными компонентами бетона, снижая его прочность. Свободная вода, замерзая на поверхности зерен заполнителей в виде тонкой пленки, препятствует сцеплению цементного теста с заполнителем. Это также ухудшает прочностные свойства бетона. После оттаивания бетона твердение его при положительной температуре возобновляется, но прочность оказывается ниже проектной, т.е. той, которая была бы достигнута при твердении в нормальных условиях. Снижаются и другие свойства бетона: плотность, долговечность, сцепление с арматурой и т.д. Свойства бетона ухудшаются тем значительнее, чем раньше после укладки произошло его замерзание. Если бетон к моменту замерзания наберет определенную прочность, то отрицательное влияние замораживания на его свойства невелико: после оттаивания прочность бетона может достигнуть проектной. В этом случае адгезионное сцепление между цементным тестом и заполнителем значительно больше внутренних напряжений. Поэтому вероятность деформаций в контактной зоне меньшая. Минимальную прочность бетона к моменту его замерзания, достаточную для достижения им после оттаивания проектной прочности, называют критической. Эта прочность для бетона марок ниже 200 в конструкциях с ненапрягаемой арматурой должна быть не менее 50% проектной и не ниже 50кгс/см2 . Для бетонов марок 200 и 300 она составляет 40%, а для бетонов марок 400 и 500 – 30% от 28-дневной прочности. Критическая прочность бетона в предварительно напряженных конструкциях должна быть не ниже 70% проектной. Если конструкции предполагается нагружать в зимний период, то к моменту замораживания прочность бетона в них должна достигнуть 100% от проектной. Для получения в зимних условиях бетона хорошего качества необходимо обеспечить для него такой температурно-влажностный режим, при котором физико-химические процессы твердения не нарушаются и не замедляются. Продолжительность поддерживания такого режима должна обеспечивать достижение критической или проектной прочности. В зависимости от характера выдерживания бетона способы зимнего бетонирования подразделяют на две группы: без обогревные и обогревные. К без обогревным способам относится бетонирование в тепляках, метод термоса, применение бетонов с противоморозными добавками и «холодных» бетонов. К обогревным относят методы искусственного подогрева бетона с применением электричества, пара или горячего воздуха. Способ бетонирования для конкретного объекта выбирают после технико-экономического сравнения вариантов с учетом темпа бетонирования, местных ресурсов и возможностей. В зимних условиях наряду с созданием оптимальной тепло-влажностной среды для выдерживания бетона применяют ряд специальных приемов обеспечения требуемой температуры бетонной смеси в процессе ее приготовления, а также по предохранению охлаждения смеси при ее транспортировании и укладке.
studfiles.net