Теплопроводность кирпича красного: Теплопроводность кирпича в сравнении с другими материалами

Теплопроводность кирпича

 

Современный строительный рынок все чаще пополняют новые материалы, восхищающие потребителя качественным исполнением, улучшенными свойствами, обновленными возможностями. Их преимущества над традиционными бесспорны за счет преобладания сразу нескольких характеристик по многим значимым параметрам.


При появлении новых технологий в строительной индустрии не стоит забывать и хорошо проверенные временем стройматериалы. К примеру, кирпичные материалы во все времена относились к востребованным, и никакие факторы не могут повлиять на уровень их популярности. Из них возведено большинство построек, так как они обладают способностью к противостоянию разным климатическим условиям.

 


С давних времен до сегодняшнего дня эта строительная продукция выдерживает весомые нагрузки, проходит долгое испытание временем. Прочность, долговечность, экологические свойства, водостойкость, морозоустойчивость, звуко- и теплоизоляционные характеристики относят его к ряду лучших стройматериалов.

 

Что такое теплопроводность?

 

 

Керамические изделия используют при возведении несущих стен, перегородок между комнатами, облицовочные – дают возможность придать дому и прилегающему к нему забору аккуратный и достойный вид, презентабельность, создают неповторимый стиль, а также увеличивают тепло в доме. При выборе стройматериала для постройки перекрытий, стен и полов именно такие факторы являются самыми важными.

 


На вопрос: «Каким же образом определить величину тепловой характеристики?», отвечают эксперты с богатым и длительным опытом работы. Они авторитетно настаивают на том, что многочисленные виды кирпичной кладки детально исследовались в лабораторных условиях. В соответствии с полученными данными выставлен определенный коэффициент теплопроводности кирпича.

 

Показатели указывают на различные температуры, поскольку тепловая энергия имеет способность постепенного перехода из горячего состояния в холодное. При довольно высокой температуре этот процесс можно увидеть открыто. Высокоинтенсивная передача тепла обусловлена градациями в температуре.

 

Закон Фурье вкратце

 


Величина степени переноса теплоты обозначается специальным коэффициентом (КТ) – λ, а тепловая энергия измеряется в Вт. Последняя уменьшает свой уровень при прохождении расстояния в 1 мм с различием температуры на 1 градус. В итоге меньшая потеря энергии выгоднее, а стройматериал с небольшим КТ относится к более теплому.

 

Теплопроводный параметр большой мерой обусловлен плотностью, при уменьшении ее уровня понижается и тепловой показатель. То есть плотные тяжелые экземпляры обладают повышенным значением Т, а более легкий вес и меньшая прочность указывает на небольшую Т. Для повышения Т влияют на состав материала, его плотность, соблюдение методики изготовления, влаговместимость.

 

Показатели теплопроводности разных видов кирпичей

 

 


Теплопроводность пустотелого кирпича — 0,3-0,4 Вт/м*К, то есть потеря тепла выше практически вдвое. Вследствие этого такие постройки требуют дополнительного утепления.


У кирпича облицовочного величина данной характеристики зависит от вида, ведь он подразделяется на керамический, силикатный, гиперпрессованный и клинкерный. Наиболее высокий уровень Т у клинкерного, а низкий – у керамического. Силикатный намного холоднее керамического, а наиболее популярный в этом плане – гиперпрессованный. Чем плотнее и прочнее стройматериал, тем выше уровень его Т.

 

 

 

Красный кирпич имеет теплопроводность, зависящую от технологии его производства. Благодаря достаточной плотности и пустотности от 40% до 50% Т составляет 0,2 – 0,3 Вт/м*К. При такой величине толщина стен может быть значительно меньшей, чем в постройке с силикатным.

 


Уровень тепловой характеристики у шамотного кирпича является очень важной их всех остальных показателей. Наиболее важно учитывать этот фактор при возведении печей, а также каминов. Свойство быстро отдавать тепло просто незаменимо при желании иметь у себя дома такие виды обогрева.


Как известно, степень передачи тепловой энергии формируют такие различные качественные свойства: вес, объем, влажность, пористость, плотность, влажность, виды добавок. Большое количество пор, содержащих воздух, создает низкий уровень проведения тепла. Для обеспечения тепла в жилище следует выбирать стройматериалы с низким значением КТ, поскольку он непосредственно влияет на выбор технологии утепления стен и отопительной системы.


Итак, каждый вид кирпича имеет свой коэффициент теплопроводности (КТ), измеряющийся в Вт/м°С или в Вт/м*К. Для силикатного, керамического, полнотелого и пустотелого данные указаны выше. Облицовочный (лицевой) керамический имеет достаточно низкий уровень – 0.3 – 0.5, а гиперпрессованный, наоборот, – 1.1. Красный пустотелый —  лишь 0.3 — 0.5,«сверхэффективный» – от 0.25 до 0.26, полнотелый – от 0.6 до 0.7, глиняный — 0.56.

Кирпичные изделия от разных производителей имеет отличия физических характеристик. Поэтому строительные работы должны вестись с учетом значений указанных коэффициентов, обозначенных в документации от завода-изготовителя. Перед началом работ следует изучить всю сопутствующую информацию, выслушать рекомендации опытных строителей-специалистов и только потом подготовлено начать задуманное строительство.

Теплопроводность кирпича керамического (полнотелого и пустотелого) и силикатного

Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Содержание

  • 1 Коэффициент теплопроводности кирпичей
  • 2 Теплопроводность кладки
  • 3 Расчет
  • 4 Уменьшение коэффициента теплоотдачи стены
  • 5 Технологии укладки
  • 6 Утепление здания
  • 7 Что обозначает показатель
  • 8 Свойства различных типов
    • 8.1 Красный керамический
    • 8.2 Клинкерный
    • 8.3 Характеристика шамотного
    • 8.4 Силикатный
  • 9 Какая теплопроводность изделий
  • 10 Что влияет на показатели

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Расчет

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

  1. Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
  2. По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

  • малоэффективная (обыкновенная) — от 0,46 и выше;
  • условно-эффективная — 0,36-0,46;
  • эффективная — 0,24-0,36;
  • повышенная — 0,2-0,24;
  • высокая — меньше 0,2.

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:

  1. Влажность. 0,6 — значение λ для воды. Влажный насыщенный воздух или капли жидкости замещают сухой воздух в порох утеплителя и стеновых конструкциях при их намокании. Это приводит к росту показателей теплопроводности.
  2. Плотность. Тепловая энергия лучше передается, если частицы в теле расположены более тесно и в большем количестве. Опытным путем или на основе справочных данных определяется зависимость плотности и теплопроводности материала.
  3. Пористость. Однородность структуры изделий нарушается из-за наличия в ее составе пор. Заполненный воздухом объем, занятый порами, передает часть энергии теплового потока. Для сухого воздуха принимает значение λ отсечной точки 0,02. Теплопроводность стройматериалов будет меньше, если воздушными порами будет занят больший объем.
  4. Структура пор. Тепловой поток снижает скорость при наличии в изделиях небольших пор замкнутого характера. Тепловая конвекция будет участвовать в передаче тепла, когда имеются относительно большие сообщающиеся между собой поры.

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.

По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.

0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

Характеристики материала:

  1. Морозостойкость более 100 циклов.
  2. Минимальная марка прочности М250.
  3. 1500 кг/см3 — наименьший показатель плотности.
  4. Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
  5. 6% — максимальное водопоглощение.
  6. Коэффициент теплопроводности — 1,15Вт/м*0С.

Характеристика шамотного

Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:

  • 7% — водопоглощение;
  • высокая устойчивость к кислотам и щелочам;
  • 3,7 кг — средний вес;
  • 1350°С — рабочая температура, 1750° — максимальная;
  • 15-23 Н/мм2 — значение прочности на сжатие;
  • 0,84-1,28 Вт/м*0С — коэффициент теплопроводности.

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.

Характеристики плотности:

  • 1450 кг/м3 — для пустотелого кирпича марки М150;
  • 1700-2100 кг/м3 — для полнотелого М150-200.

Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

Что влияет на показатели

Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги;
  • плотность.

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.

 

Теплопроводность глиняных кирпичей

Введение

Строительный сектор является крупной отраслью в Канаде, которая в настоящее время обеспечивает работой около 1,2 миллиона канадцев. Это составляет впечатляющие 7% всей рабочей силы страны. Поскольку население и экономика Канады продолжают расти, будет расти и потребность в высококачественной инфраструктуре и жилье. Подрядчики и строители начинают уделять больше внимания использованию высокоэффективных строительных материалов, особенно с желаемыми тепловыми свойствами, для удовлетворения этого постоянно растущего спроса. Стремление к более тепловым строительным материалам подпитывается потребностью в большей экономии энергии, которая приобретает все большее значение почти во всех странах мира. В большинстве развитых стран методы строительства и строительства составляют почти половину общего потребления энергии, а также являются источником вредных для окружающей среды выбросов CO2. Было проведено значительное количество исследований в попытке обнаружить и внедрить более экологически безопасные и устойчивые методы и методы строительства для замены устаревших и опасных, используемых в настоящее время. Одна из областей в этой области исследований связана с использованием более возобновляемых ресурсов (таких как глина) для разработки и тонкой настройки популярных и широко используемых строительных материалов. Глина — это простой материал, полученный из земли, который использовался для строительства домов и других видов инфраструктуры с 7000 г. до н.э., что делает его одним из старейших строительных материалов в этой истории цивилизации. Популярность глиняного кирпича не поколебалась с момента его первого использования тысячи лет назад, поскольку он по-прежнему остается самым востребованным строительным материалом на всей планете. Недавние исследования показали, что по крайней мере одна треть населения мира проживает в земляных жилищах того или иного типа, сделанных из глины или аналогичного по структуре материала. Высокое использование этого ресурса по всей планете показывает, насколько важно учитывать все свойства природных глиняных материалов, чтобы в полной мере использовать все полезные физические и термические аспекты для создания наиболее эффективного кирпича для строительных целей.

Из чего сделан глиняный кирпич?

Растущий интерес профессионалов в этом секторе связан с изучением использования и применения кирпича как устойчивого материала. Базовый состав кирпича состоит из двух разных материалов, связанных друг с другом особым образом, так что один из них служит матрицей, окружающей армирующий материал. Двумя наиболее распространенными используемыми материалами являются глина с низким содержанием влаги и сланец, которые помещают в формы, а затем оставляют затвердевать, прежде чем разрезать на более мелкие однородные куски для формирования отдельных кирпичей. Глиняные кирпичи представляют собой комбинацию чисто природных элементов, включая глину, песок, воду и воздух. В кирпичи при их формовании не добавляются токсичные вещества, так как они полностью изготавливаются из инертных материалов, не представляющих опасности для человека. Для подрядчиков важно учитывать токсичность строительных материалов перед их использованием, особенно тех, которые подвергаются воздействию окружающей среды, поскольку они потенциально могут разрушать и загрязнять окружающую почву или близлежащие водоемы. К счастью, это не проблема при строительстве из кирпича, поскольку он полностью сделан из материалов, полученных из земли, и обычно без добавления каких-либо искусственных веществ. Глина и суглинок, два распространенных материала, присутствующих в кирпичах, кажутся неисчерпаемыми ресурсами. Процессы раскопок, используемые для удаления глины из ее естественного местоположения, носят временный характер и охватывают ограниченную площадь поверхности, поэтому они относительно неинвазивны для окружающей природной среды обитания. После раскопок участок реконструируется, и большинство участков относительно быстро восстанавливаются до своего первоначального неизмененного состояния.

Рисунок 1: Экскаваторы, добывающие глину из открытого промышленного карьера.

Термические свойства глиняных кирпичей

Глиняные кирпичи предлагают домовладельцам уникальное экономическое преимущество с точки зрения экономии денег на счетах за тепло и электроэнергию. Поначалу строительство дома из кирпича может показаться крутым вложением, но оно, несомненно, окупится в долгосрочной перспективе. Кирпич обладает низкой теплопроводностью, которая в среднем составляет 0,5–1,0 Вт/(м/К). Теплопроводность материала напрямую связана с его способностью эффективно передавать через себя тепло. Материалы с низкой теплопроводностью, такие как глиняный кирпич, называются теплоизоляционными, поскольку они ограничивают движение тепла, проходящего через них. Это тепловое свойство чрезвычайно желательно с точки зрения строительства дома, поскольку оно обеспечивает регулирование температуры в помещении, ограничивая попадание холодного воздуха в дом и блокируя выход более теплого воздуха из помещения в окружающую среду. На температуру окружающей среды в доме влияют три основных режима теплопередачи: теплопроводность, конвекция и излучение. Большая часть движения тепла через здание может быть объяснена теплопроводностью, поскольку тепло по-разному проходит через материалы с различными значениями теплопроводности. Глиняные кирпичи обладают низкой теплопроводностью, в основном из-за наличия полостей, содержащих пузырьки воздуха и промежутков между ними. Воздух обладает чрезвычайно высоким термическим сопротивлением и низкой теплопроводностью, что придает кирпичу еще большую изоляционную способность. Материал с высоким термическим сопротивлением ограничивает теплопередачу и является тем свойством, которое позволяет кирпичу действовать как естественный кондиционер в жаркие летние месяцы или как мощный обогреватель зимой.

Рисунок 2: Механизм теплопередачи.

Влияние климата на теплоизоляционные свойства глиняных кирпичей

К сожалению, теплоизоляционные свойства кирпичей неодинаковы во всех регионах и климатических условиях мира. В тропических регионах, где среднегодовая температура составляет 22-35 ºC, кирпич действует как отличный изоляционный материал и может поддерживать более низкую температуру в помещении, несмотря на жаркую окружающую среду. В районах, где температура часто падает ниже 10ºC, изоляционная прочность кирпича может быть снижена из-за изменения теплового баланса влаги, а в некоторых случаях может вызвать проблемы с влажностью, такие как повреждение конструкции или стены от замерзания и оттаивания. Этот риск заставляет многих дизайнеров интерьеров искать способы избежать этой проблемы, которая может привести к значительным потерям энергии, что, в свою очередь, сделает здание менее удобным и пригодным для использования, чем если бы оно было должным образом изолировано. Одним из новых решений этой проблемы является включение других материалов с аналогичными тепловыми свойствами в конструкцию из кирпича, чтобы улучшить их изоляционные свойства и защитить их от повреждения водой. В настоящее время наиболее эффективными добавками к кирпичам являются стекловата или натуральная пробка, а также полиэтилен.

Рисунок 3: Изоляция из стекловаты – используется в качестве обычной добавки при формировании глиняных кирпичей.

Рисунок 4: Натуральная пробка – используется в качестве обычной добавки при формировании глиняных кирпичей.

Устойчивые глиняные кирпичи

Ряд производителей также используют отходы при строительстве и формовании своих глиняных кирпичей. Эта растущая тенденция среди производственных компаний, вероятно, может быть связана с стремлением потребителей и местных органов власти к более устойчивым методам строительства и добычи ресурсов. Органические отходы иногда включали в кирпичи, и было обнаружено, что они обладают отличными энергосберегающими свойствами и выдающимися теплоизоляционными свойствами. Еще один путь, которым пользуются некоторые компании, заключается в использовании переработанной бумаги для повышения термостойкости кирпича. Перечень материалов, которые могут быть включены в состав глиняных кирпичей, постоянно растет, однако такой высокий спрос на кирпич оказывает повышенное давление на запасы аллювиальных почв, которые находятся под угрозой истощения. Поскольку спрос на экологичные строительные материалы продолжает расти, компаниям в этом секторе будет еще важнее избегать чрезмерной эксплуатации, особенно если потребители продолжат заменять такие материалы, как сталь и бетон, глиняными кирпичами. Исследования в этой области продолжаются, поскольку новые смеси постоянно тестируются на тепловые и энергетические преимущества.

Рисунок 5: Строитель укладывает глиняные кирпичи.

Заключение

Глиняные кирпичи являются одними из древнейших строительных материалов на земле, играя ключевую роль в строительстве и развитии древней архитектуры. Перенесемся в 21 век, и они по-прежнему остаются самым популярным строительным материалом на всей планете. Большая часть их популярности может быть связана с их низкой теплопроводностью, высокой термостойкостью и способностью к устойчивой добыче и переработке. Поскольку глобальный акцент продолжает смещаться в сторону создания более зеленой планеты, эволюция и совершенствование материалов, из которых состоят кирпичи, будет по-прежнему сосредоточена на повышении теплового сопротивления, чтобы способствовать более энергоэффективному зданию за счет ограничения ненужного теплового потока. В климате, похожем на канадский, который слишком знаком с суровыми и холодными зимами, возможность сохранять тепло и экономить деньги за счет снижения потребления энергии чрезвычайно полезна как для домовладельца, так и для окружающей среды. Строительство домов и инфраструктуры из глиняного кирпича может обеспечить все эти преимущества экономии энергии и ресурсов просто за счет правильного использования природных характеристик этого устойчивого ресурса.

Автор: Каллиста Уилсон | Младший технический писатель | Thermtest

Ссылки

Deboucha, S., & Hashim, R. (nd). Обзор кирпичей и блоков из стабилизированного спрессованного грунта. Науч. Рез. Очерки , 8.

Нужно ли утеплять кирпичный дом? | Кирпичный сайдинг. (2020, 20 марта). Современный дизайн . https://gambrick.com/does-a-brick-home-need-insulation/

Донди, М., Маззанти, Ф., Принципи, П., Раймондо, М., и Занарини, Г. (2004) . Теплопроводность глиняных кирпичей. Journal of Materials in Civil Engineering , 16 (1), 8–14. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(8)

Производство легкого глиняного кирпича с улучшенными теплоизоляционными свойствами за счет введения отходов ши . (н.д.). Получено 4 декабря 2020 г. с http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-64232018000300186

. Что следует учитывать при покупке морозильных камер сверхнизкой температуры . (2017, 2 августа). Новости-Medical.Net. https://www.news-medical.net/whitepaper/20170802/Points-to-Consider-When-Purchasing-Ultra-Low-Temperature-Freezers.aspx

Васич М., Лалич Ж. и Радоевич, З. (2010). ТЕРМИЧЕСКИЕ СВОЙСТВА ГЛИНЯНОГО КИРПИЧА. Международный журнал современных производственных технологий , 2 .

 

Теплопроводность

Теплопроводность

Material Thermal conductivity
(cal/sec)/(cm 2 C/cm)
Thermal conductivity
(W/m K)*
Diamond
. ..
1000
Silver
1.01
406.0
Copper
0.99
385.0
Gold
314
Brass
109.0
Aluminum
0.50
205.0
Iron
0.163
79.5
Steel
50.2
Lead
0.083
34.7
Mercury
8. 3
Ice
0.005
1.6
Glass,ordinary
0.0025
0.8
Concrete
0.002
0.8
Water at 20° C
0.0014
0.6
Asbestos
0.0004
0.08
Snow (dry)
0.00026
Fiberglass
0.00015
0,04
Кирпич, изоляция
0,15
БРИКА0075 …
0.6
Cork board
0. 00011
0.04
Wool felt
0.0001
0.04
Rock wool
0.04
Polystyrene (styrofoam)
0.033
Polyurethane
0.02
Wood
0.0001
0.12-0.04
Air at 0° C
0.000057
0.024
Helium (20°C)
0.138
Hydrogen(20°C)
0.172
Nitrogen(20°C)
. ..
0.0234
Oxygen(20°C)
0.0238
Silica aerogel
0,003

*Большинство из Юнга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из CRC Handbook of Chemistry and Physics.

Обратите внимание, что 1 (кал/сек)/(см 2 Кл/см) = 419 Вт/м·К. Имея это в виду, два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт/мК для полиуретана можно принять за номинальную цифру, которая делает пенополиуретан одним из лучших изоляторов. NIST опубликовал процедуру числового приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethan.html. Их расчет для наполненного фреоном полиуретана плотностью 1,99 lb/ft 3 при 20°C дает теплопроводность 0,022 Вт/мК. Расчет для наполненного полиуретана CO 2 с плотностью 2,00 фунт/фут 3 дает 0,035 Вт/мК.

Обсуждение теплопроводности
Температура Дебая и теплопроводность

Индекс

Таблицы

Справочник
Юнг
Глава 15.

  Гиперфизика***** Термодинамика Вернуться

Соотношение между теплопроводностью и электропроводностью металлов можно выразить соотношением:

, которое можно назвать отношением Видемана-Франца или постоянной Лоренца.

Metal k/sT (10 -8 WW/K 2 )
Cu
2.23
Ag
2.

ООО "ПАРИТЕТ" © 2021. Все права защищены.