ПУЛЬСАР-2.1 Ультразвуковой прибор для контроля прочности. Ультразвуковой измеритель прочности бетона
Определение прочности бетона с помощью ультразвука
Ультразвуковая проверка прочности и дефектов бетонных конструкций относится к одному из самых эффективных методов неразрушающего контроля. Кроме прочности, подобным образом можно определить: наличие пустот и прочих дефектов по всей толще материала.
СодержаниеСвернуть
- Технология определения прочности бетона ультразвуком
- Этапы технологии
Технология определения прочности бетона ультразвуком
Ультразвук широко используется для проверки различных конструкционных материалов на наличие дефектов. В частности кроме бетона, ультразвуковое «просвечивание» применяют для проверки на скрытые дефекты литья, ответственных сварочных швов и прочих изделий. При этом суть технологии довольно проста – ультразвуковые волны, генерированные специальной установкой «натолкнувшись» на пустоты и другие дефекты изменяют свою скорость. Измерив, скорость, данную величину сравнивают со специальными таблицами, и такими образом оценивают прочность и целостность бетона или другого проверяемого изделия.
На данный момент времени существует два основных метода проверки бетона ультразвуком:
- Сквозной – просвечивание происходит через всю толщу конструкции. В этом случае датчики измерения скорости ультразвуковых волн располагаются на противоположных сторонах проверяемого ЖБИ;
- Поверхностный – датчики измерения скорости ультразвука располагаются на одной стороне проверяемого ЖБИ.
Этапы технологии
- Установка градуировочной зависимости. Градуировочная зависимость устанавливается эмпирически (экспериментально) на основании данных двух испытаний одного и того же участка бетона – методом ультразвукового просвечивания и методом отрыва со сколом, либо результатов испытания вырезанного образца. Допускается построение градировочной зависимости для конкретной марки бетона по результатам ультразвукового просвечивания и последующего испытания на прессе образцов-кубиков. Если расчет и создание градуировочной зависимости по тем или иным причинам затруднено либо невозможно допускается ультразвуковое определение прочности материала на основании универсальной градуировочной зависимости установленной для конкретных регионов или для отдельных объектов;
- Возраст материала в отдельных зонах не должен отличаться больше чем на 25% от усредненного возраста бетона на проверяемых зонах изделия или групп изделий. Допустимо исключение – инженерные обследования, когда процент различия в возрасте не оговорен нормативными документами;
- На выбранном для проверки участке, магнитным прибором (например, прибором «Поиск») определяют месторасположение армирования, после чего ультразвуковой установкой производят минимум 2 измерения скорости распространения ультразвуковой волны. При этом прозвучивание осуществляют под углом около 45 градусов к направлению армирования, параллельно армированию и перпендикулярно арматуре.
- Отклонение конкретных результатов измерения скорости распространения ультразвуковой волны на каждом конкретном участке не должно превышать 2 процента от среднеарифметического значения результатов измерения для данной зоны. Результаты измерений, которые не удовлетворяют этому требованию не учитываются при определении среднеарифметического значения скорости распространения ультразвуковой волны для данной зоны;
- Прочность бетона на сжатие вычисляют по усредненному значению скорости распространения волн ультразвука.
Определение класса материала по данным ультразвуковых измерений, производится согласно требований соответствующих нормативных документов.
Скачать ГОСТ 17624 Бетоны. Ультразвуковой метод определения прочности (*.pdf)
salecement.ru
Приборы для ультразвукового контроля бетона серии ПУЛЬСАР от НПП «Интерприбор»
Неразрушающий контроль бетона ультразвуковым методом занимает особое место – это самый распространённый метод контроля, который позволяет заглянуть внутрь бетона и увидеть различные внутренние дефекты: трещины, полости, каверны, крупные неоднородности структуры. Ультразвуковые измерения широко используют на всех этапах от производства элементов бетонных конструкций и возведения строительных объектов, до технической экспертизы при эксплуатации и реконструкции зданий и сооружений. Для решения подобных задач наша компания предлагает три прибора данной категории – ПУЛЬСАР-2М, ПУЛЬСАР-2.1, ПУЛЬСАР-2.2.
Наши приборы для ультразвукового контроля прочности бетона
Компания «Интерприбор» предлагает следующие приборы контроля прочности бетона ультразвуковым методом:
- ПУЛЬСАР-2М – наиболее простая модель серии «Пульсар», реализуемая нашей компанией. Представляет собой моноблок, осуществляющий ультразвуковой контроль бетона. Прибор работает только в режиме поверхностного прозвучивания и в этом его главное отличие от ПУЛЬСАР-2.1 и ПУЛЬСАР-2.2. Фиксированное расстояние между датчиками в приборе 120 мм позволяет «заглянуть» в бетон на глубину, равную его половине, т.е. 60 мм, и по измеренной скорости прохождения ультразвука рассчитать прочность, определить класс бетона и оценить глубину трещин.
- ПУЛЬСАР-2.1 – это прибор, который работает как с внешними датчиками поверхностного, так и сквозного прозвучивания. При этом, например, при оценке глубины трещин вы уже не ограничены глубиной 60 мм. Кроме того, вы можете заказать датчики различного исполнения, например, для ультразвуковых измерений под водой. Это самый востребованный у заказчиков прибор для ультразвукового контроля бетона.
- ПУЛЬСАР-2.2 – это наиболее функционально насыщенный прибор для ультразвукового контроля бетона, имеющий опцию визуализации принимаемого сигнала. Она позволяет правильно определить момент первого вступления при работе с материалами, имеющими высокое затухание, а также при больших базах прозвучивания. Анализ формы сигнала помогает правильно интерпретировать некоторые дефекты в испытуемых конструкциях.
Вышеуказанные приборы ультразвукового контроля бетона обеспечивают проведение измерений в соответствии с требованиями современных стандартов. Модели ПУЛЬСАР-2.1 и ПУЛЬСАР-2.2 имеют несколько вариантов исполнения, что позволяет подобрать прибор, полностью соответствующий Вашим потребностям. Гарантия на нашу продукцию от 18 до 24 месяцев.
www.interpribor.ru
Ультразвуковой метод определения прочности бетона
Количество просмотров публикации Ультразвуковой метод определения прочности бетона - 1562
6.4.1. Принцип определения прочности бетона ультразвуковым методом основан на наличии функциональной связи между скоростью распространения ультразвуковых колебаний и прочностью бетона.
Ультразвуковой метод применяют для определения прочности бетона классов В7,5 - В35 (марок М100-М400) на сжатие.
6.4.2. Прочность бетона в конструкциях определяют экспериментально по установленным градуировочным зависимостям ʼʼскорости распространения ультразвука - прочность бетона V=f(R)ʼʼ или ʼʼвремя распространения ультразвука t - прочность бетона t=f(R)ʼʼ. Степень точности метода зависит от тщательности построения тарировочного графика.
Тарировочный график строится по данным прозвучивания и прочностных испытаний контрольных кубиков, приготовленных из бетона того же состава, по той же технологии, при том же режиме твердения, что и изделия или конструкции, подлежащие испытанию. При построении тарировочного графика следует руководствоваться указаниями ГОСТ 17624-87.
6.4.3. Для определения прочности бетона ультразвуковым методом применяются приборы: УКБ-1, УКБ-1М, УК-16П, ʼʼБетон-22ʼʼ и др. Размещено на реф.рф(см. табл. 6.2).
6.4.4. Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания. Схема испытаний бетона приведена на рис. 6.18.
Рис. 6.18. Способы ультразвукового прозвучивания бетона
а - схема испытания способом сквозного прозвучивания; б - то же, поверхностного прозвучивания; УП - ультразвуковые преобразователи
При измерении времени распространения ультразвука способом сквозного прозвучивания ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции.
Скорость ультразвука V, м/с, вычисляют по формуле
, (6.5)
где t - время распространения ультразвука, мкс;
l - расстояние между центрами установки преобразователей (база прозвучивания), мм.
При измерении времени распространения ультразвука способом поверхностного прозвучивания ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции по схеме, приведенной на рис. 6.18.
6.4.5. Число измерений времени распространения ультразвука в каждом образце должно быть: при сквозном прозвучивании - 3, при поверхностном - 4.
Отклонение отдельного результата измерения времени распространения ультразвука в каждом образце от среднего арифметического значения результатов измерений для данного образца, не должно превышать 2 %.
Измерение времени распространения ультразвука и определение прочности бетона производятся в соответствии с указаниями паспорта (технического условия применения) данного типа прибора и указаний ГОСТ 17624-87.
6.4.6. На практике нередки случаи, когда возникает крайне важно сть определения прочности бетона эксплуатируемых конструкций при отсутствии или невозможности построения градуировочной таблицы. В этом случае определение прочности бетона проводят в зонах конструкций, изготовленных из бетона на одном виде крупного заполнителя (конструкции одной партии). Скорость распространения ультразвука V определяют не менее чем в 10 участках обследуемой зоны конструкций, по которым определяют среднее значение V. Далее намечают участки, в которых скорость распространения ультразвука имеет максимальное Vmax и минимальное Vmin значения, а также участок, где скорость имеет величину Vn наиболее приближенную к значению V, а затем выбуривают из каждого намеченного участка не менее чем по два керна, по которым определяют значения прочности в этих участках: Rmax, Rmin, Rn соответственно. Прочность бетона RH определяют по формуле
(6.6)
при Rmax /100. (6.7)
Коэффициенты а1 и a0 вычисляют по формулам
; (6.8)
. (6.9)
6.4.7. При определении прочности бетона по образцам, отобранным из конструкции, следует руководствоваться указаниями ГОСТ 28570-90.
6.4.8. При выполнении условия 10 % допускается ориентировочно определять прочность: для бетонов классов прочности до В25 по формуле
, (6.10)
где А - коэффициент, определяемый путем испытаний не менее трех кернов, вырезанных из конструкций.
6.4.9. Для бетонов классов прочности выше В25 прочность бетона в эксплуатируемых конструкциях должна быть оценена также сравнительным методом, принимая в основу характеристики конструкции с наибольшей прочностью. В этом случае
(6.11)
6.4.10. Такие конструкции, как балки, ригели, колонны должны прозвучиваться в поперечном направлении, плита - по наименьшему размеру (ширине или толщине), а ребристая плита - по толщине ребра.
6.4.11. При тщательном проведении испытаний данный метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и испытанию образцов.
referatwork.ru
ультразвуковой прибор контроля прочности бетона от НПП «Интерприбор»
Ультразвуковой контроль бетона часто применяют для массовых испытаний как конструкции целиком, так и отдельных элементов зданий и сооружений. Преимуществом метода ультразвукового контроля бетона является то, что с его помощью можно не только определить прочности бетона, но и своевременно обнаружить различные дефекты – пустоты, лакуны, трещины. Так, ультразвук позволяет оценить глубину трещин, выходящих на поверхность бетона. Для этого чаще всего используют два метода измерений, один из которых получил наибольшее распространение в России, другой зафиксирован в английском стандарте BS 1881. В первом случае сначала измеряют время распространения продольной волны на участке с дефектом посередине, затем на аналогичном участке без дефекта, оба измерения производят на одной базе.
Во втором случае (стандарт BS 1881, разностная схема) также измеряется время распространения продольной волны, но сначала датчики располагают на исследуемом участке на одинаковом расстоянии от трещины (трещина посередине), при повторном измерении расстояние между датчиками увеличивают в два раза, трещина так же остаётся посередине между ними. Приборы контроля прочности бетона на основании полученных результатов автоматически производят расчеты и отображают полученные результаты глубины трещины на дисплее. Первый (российский) метод, если трещина небольшая (до 60 мм глубиной), требует меньше времени, т.к. измерения выполняют на одной базе и используют для этого рукоять с закреплёнными на ней датчиками. Для английского варианта необходимо измерения производить на двух различных базах и используют для этого отдельные датчики, по времени это более затратно.
Компания «Интерприбор» разработала портативный прибор для контроля бетона Пульсар-2.1, который в зависимости от комплектации позволяет проводить поверхностное, сквозное или оба вида прозвучивания бетона.
Пульсар – ультразвуковой прибор, позволяющий получить точные результаты даже на больших базах прозвучивания, благодаря высокой чувствительности и отличному соотношению «сигнал-шум».
По желанию заказчика прибор можно укомплектовать дополнительными датчиками, кабелями, футляром для удобства выполнения измерений и специальным кейсом для хранения и транспортировки.
www.interpribor.ru
Ультразвуковой измеритель прочности бетона УКС-МГ4
Ультразвуковой измеритель прочности бетона УКС-МГ4
Ультразвуковой измеритель УКС-МГ4 разработан для оценки прочности бетонных и железобетонных изделий, а также силикатного кирпича. Оценка прочности в приборе определяется в зависимости скорости и времени распространения ультразвуковых импульсов поверхностным методом. Компактный, эргономичный и быстрый дефектоскоп УКС-МГ4 будет идеально вписан в приборный парк предприятий, которые занимаются промышленным и гражданским строительством для осуществления входного контроля бетонных изделий, а также контроля качества изготовленных конструкций. Предприятиям, которые занимаются изготовлением железобетонных изделий, для осуществления внутреннего контроля качества. Независимым строительным лабораториям как для вновь строящихся объектов, так и для оценки состояния уже построенных.
Ультразвуковой измеритель прочности бетона УКС-МГ4 внесен в Государственный реестр средств измерений под №38169-08 со сроком действия свидетельства до 2018 года.
Основные функции УКС-МГ4:
- Определение геометрической величины дефекта (глубина трещины)
- Ручная настройка градуировок для различных материалов и изделий
- Встроенные градуированные зависимости стройматериалов
- Поверхностный метод измерения
- Определение прочности не идентифицированных стройматериалов по градуированным характеристикам ЦНИИОМПТ
- Внутренняя память рассчитана на десять тысяч измерений
- Для удобства использования преобразователь интегрирован в корпус прибора
Технические и эксплуатационные параметры прибора УКС-МГ4
Наименование |
Значение |
Интервал времени распространения ультразвуковых колебаний |
15… 150 мкс |
Цена деления |
0,1мкс |
Интервал измерения скорости звука |
1000 … 8000 м/с |
Допустимая абсолютная погрешность |
Не более t = ±(0,01t+0,1) мкс |
Напряжение генераторов зонд. импульсов |
400…600В |
Частота колебаний |
55…85 кГц |
Напряжение питания прибора |
3В |
Тип аккумуляторных батарей |
АА- 2 шт |
Геометрические размеры прибора Ш х В х Г |
230 х 130 х 73 мм |
Вес прибора |
550 гр |
Время работы от АКБ в режиме постоянных измерений |
30 часов |
Средний срок службы |
120 мес |
Расчетная наработка на отказ |
20000 часов |
относительная влажность воздуха |
не более 80 %; |
атмосферное давление |
от 84,0 до 106,7 кПа |
температура окружающего воздуха |
-20 … 40 гр.Цельсия |
Комплект поставки УКС-МГ4
Вычислительно- показывающий блок с интегрированным преобразователем |
1 шт |
Интерфейсный кабель для связи с компьютером |
1шт |
Компакт диск с ПО |
1шт |
Инструкция по использования прибора |
1 к-т |
Контрольный образец |
1 шт (L=140мм) |
Кейс |
1шт |
Вы можете купить Ультразвуковой измеритель УКС-МГ4 в компании СЕТРИКС отправив заявку на [email protected] или позвонить по телефонам, указанным в разделе контакты
www.setrix.ru
Ультразвуковой измеритель прочности бетона УКС-МГ4
Утвержден тип средства измерения Внесен в Госреестр РФ под № 38169-08 (продлен до 2018 года) Внесен в Госреестр Казахстана, Беларуси
Приборы УКС-МГ4, УКС-МГ4С предназначены для контроля дефектов, определения прочности бетона ультразвуковым методом в сборных и монолитных бетонных и железобетонных изделиях и конструкциях по ГОСТ 17624, определения прочности силикатного кирпича по ГОСТ 24332 и других твердых материалов на основе измерения времени распространения импульсных ультразвуковых колебаний (УЗК) на установленной базе прозвучивания. Снабжены устройством автоматического определения силы прижатия ПЭП с заданием параметров УЗК импульсов, подсветкой дисплея.
При работе с прибором УКС-МГ4 используется поверхностный, а при работе с прибором УКС-МГ4С поверхностный и сквозной методы прозвучивания.
Основные функции приборов:
- Измерение времени и скорости распространения ультразвука в материалах при сквозном и поверхностном прозвучивании
- Определение прочности строительных материалов по установленной градуировочной зависимости
- Оценка прочности бетонов неизвестного состава по градуировочным характеристикам ЦНИИОМПТ
- Возможность установки индивидуальных градуировок для различных видов стройматериалов
- Определение глубины трещин
- Поиск дефектов по аномальному уменьшению скорости распространения ультразвука
- Архивация получаемой в результате измерений информации в памяти прибора, с фиксацией времени, даты, вида, характеристики стройматериала и коэффициента вариации (объем памяти 10000 результатов).
- Передача информации, полученной в результате измерений, на ПК
Электронный блок прибора совмещен с преобразователями для поверхностного прозвучивания (база 120мм), что обеспечивает удобство в работе, малые габариты и вес.
Область применения приборов - строящиеся и эксплуатируемые здания и сооружения, гидротехнические сооружения, сооружения с затрудненным двухсторонним доступом к контролируемым участкам, предприятия стройиндустрии.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Наименование характеристик | УКС-МГ4 | УКС-МГ4С |
Диапазон измерений времени распространения УЗК, мкс | от 15 до 150 | от 15 до 2000 |
Дискретность индикации времени распространения УЗК, мкс | 0,1 | |
Диапазон измерения скорости УЗК, м/с | от 1000 до 8000 | |
Пределы допускаемой основной абсолютной погрешности измерений времени распространения УЗК Δt, мкс, не более: где t – измеренное время распространения УЗК в мкс. | t = ±(0,01t+0,1) | |
Амплитуда напряжения генератора зондирующих импульсов , В | 500 ± 100 | |
Рабочая частота колебаний, кГц | 70 ± 15 | |
Питание прибора осуществляется от двух гальванических элементов типа АА (LR6). Напряжение питания, В | 3 | |
Габаритные размеры, мм | ||
- электронного блока с преобразователями (ПЭП) для поверхностного прозвучивания; | 230х130х73 | |
- ПЭП для сквозного прозвучивания. | - | ø35х120 |
Масса прибора, кг | 0,55 | 1,1 |
Продолжительность непрерывной работы прибора, ч, не менее | 30 | |
Средняя наработка на отказ, ч, не менее | 20000 | |
Полный средний срок службы, лет | 10 |
КОМПЛЕКТ ПОСТАВКИ
Электронный блок, совмещенный с ПЭП для поверхностного прозвучивания, контрольный образец, упаковочный кейс, кабель связи с ПК, CD с программным обеспечением, руководство по эксплуатации. Дополнительно для УКС-МГ4С: ПЭП для сквозного прозвучивания, ремень, литол.
Гарантийный срок эксплуатации 18 месяцев. Обеспечивается сервисное и метрологическое обслуживание в течение всего срока эксплуатации.
ПЕРИОДИЧЕСКАЯ ПОВЕРКА УКС-МГ4 (мод. УКС-МГ4; УКС-МГ4С)
Периодическую поверку осуществляют государственные региональные центры метрологии в городах: Краснодар, Новокузнецк, Чебоксары, Челябинск (на базе ООО «СКБ Стройприбор») и ФГУП «ВНИИФТРИ» г. Москва.
votra.ru
Ультразвуковой метод определения прочности бетона
Поиск ЛекцийПринцип определения прочности бетона ультразвуковым методом основан на наличии функциональной связи между скоростью распространения ультразвуковых колебаний и прочностью бетона.
Ультразвуковой метод применяют для определения прочности бетона классов В7,5 - В35 (марок М100-М400) на сжатие.
Прочность бетона в конструкциях определяют экспериментально по установленным градуировочным зависимостям «скорости распространения ультразвука - прочность бетона V=f(R)» или «время распространения ультразвука t - прочность бетона t=f(R)». Степень точности метода зависит от тщательности построения тарировочного графика.
Тарировочный график строится по данным прозвучивания и прочностных испытаний контрольных кубиков, приготовленных из бетона того же состава, по той же технологии, при том же режиме твердения, что и изделия или конструкции, подлежащие испытанию. При построении тарировочного графика следует руководствоваться указаниями ГОСТ 17624-87.
Для определения прочности бетона ультразвуковым методом применяются приборы: УКБ-1, УКБ-1М, УК-16П, «Бетон-22» и др. (см. табл. 1).
Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания. Схема испытаний бетона приведена на рис. 12.
Рис. 12 Способы ультразвукового прозвучивания бетона
а - схема испытания способом сквозного прозвучивания; б - то же, поверхностного прозвучивания; УП - ультразвуковые преобразователи
При измерении времени распространения ультразвука способом сквозного прозвучивания ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции.
Скорость ультразвука V, м/с, вычисляют по формуле
,
где t - время распространения ультразвука, мкс;
l - расстояние между центрами установки преобразователей (база прозвучивания), мм.
При измерении времени распространения ультразвука способом поверхностного прозвучивания ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции по схеме, приведенной на рис. 6.18.
Число измерений времени распространения ультразвука в каждом образце должно быть: при сквозном прозвучивании - 3, при поверхностном - 4.
Отклонение отдельного результата измерения времени распространения ультразвука в каждом образце от среднего арифметического значения результатов измерений для данного образца, не должно превышать 2 %.
Измерение времени распространения ультразвука и определение прочности бетона производятся в соответствии с указаниями паспорта (технического условия применения) данного типа прибора и указаний ГОСТ 17624-87.
На практике нередки случаи, когда возникает необходимость определения прочности бетона эксплуатируемых конструкций при отсутствии или невозможности построения градуировочной таблицы. В этом случае определение прочности бетона проводят в зонах конструкций, изготовленных из бетона на одном виде крупного заполнителя (конструкции одной партии). Скорость распространения ультразвука V определяют не менее чем в 10 участках обследуемой зоны конструкций, по которым определяют среднее значение V. Далее намечают участки, в которых скорость распространения ультразвука имеет максимальное Vmax и минимальное Vmin значения, а также участок, где скорость имеет величину Vn наиболее приближенную к значению V, а затем выбуривают из каждого намеченного участка не менее чем по два керна, по которым определяют значения прочности в этих участках: Rmax, Rmin, Rn соответственно. Прочность бетона RH определяют по формуле
при Rmax/100.
Коэффициенты а1 и a0 вычисляют по формулам
;
.
При определении прочности бетона по образцам, отобранным из конструкции, следует руководствоваться указаниями ГОСТ 28570-90.
При выполнении условия 10 % допускается ориентировочно определять прочность: для бетонов классов прочности до В25 по формуле
,
где А - коэффициент, определяемый путем испытаний не менее трех кернов, вырезанных из конструкций.
Для бетонов классов прочности выше В25 прочность бетона в эксплуатируемых конструкциях может быть оценена также сравнительным методом, принимая в основу характеристики конструкции с наибольшей прочностью. В этом случае
Такие конструкции, как балки, ригели, колонны должны прозвучиваться в поперечном направлении, плита - по наименьшему размеру (ширине или толщине), а ребристая плита - по толщине ребра.
При тщательном проведении испытаний этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и испытанию образцов.
poisk-ru.ru