Расчет на местное сжатие (смятие). Расчет бетона на смятие
Расчет на местное сжатие (смятие)
3.89*.При расчете на местное сжатие (смятие) элементов без косвенного армирования должно удовлетворяться условие
N £ jloc Rb,loc Aloc , (106)
где N —продольная сжимающая сила от местной нагрузки;
jloc - коэффициент, принимаемый равным: при равномерном распределении местной нагрузки на площади смятия — 1,00, при неравномерном распределении — 0,75;
Aloc —площадь смятия;
Rb,loc —расчетное сопротивление бетона смятию, определяемое по формулам:
Rb,loc = 13,5 jloc1 Rbt ; (107)
jloc1 = £ 2 . (108)*
В формулах (107) и (108*):
Rbt —расчетное сопротивление бетона растяжению для бетонных конструкций;
Ad —расчетная площадь, симметричная по отношению к площади смятия в соответствии со схемами, приведенными на черт. 9.
3.90.При расчете на местное сжатие (смятие) элементов с косвенным армированием в виде сварных поперечных сеток должно удовлетворяться условие
N £ Rb,red Aloc , (109)
где Аloc —площадь смятия;
Rb,red —приведенная прочность бетона осевому сжатию, определяемая по формуле
Rb,red = Rb jloc,b + j Rs jloc,s . (110)
В формуле (110):
Rb, Rs - в МПа;
jloc,b= £3 ;
j,m— соответственно коэффициент эффективности косвенного армирования и коэффициент армирования сечения сетками или спиралями [формулы (83), (84) и (87)] согласно п. 3.72*;
Черт. 9. Схемы расположения расчетных площадей Ad в зависимости от положения площадей смятия Аloc
jloc,s = 4,5 - 3,5 ;
Aef —площадь бетона, заключенного внутри контура сеток косвенного армирования, считая по их крайним стержням, при этом должно удовлетворяться условие Аloc< Аef£Аd ;
Ad —расчетная площадь, симметричная по отношению к площади смятия Аloc и принимаемая не более указанной на черт. 9.
Остальные обозначения следует принимать согласно требованиям п. 3.89*.
Бетон конструкции в зоне передачи на него сосредоточенных усилий (см. черт. 9) должен быть рассчитан на местное сжатие (смятие), а также по трещиностойкости с учетом местных растягивающих напряжений согласно указаниям п. 3.111*.
Расчет на выносливость
3.91*.Расчету на выносливость подлежат элементы железнодорожных мостов, мостов под пути метрополитена, совмещенных мостов и плиты проезжей части автодорожных и городских мостов; при толщине засыпки менее 1 м — ригели рам и перекрытия прямоугольных железобетонных труб, включая места их сопряжения со стенками.
На выносливость не рассчитывают:
бетонные опоры;
фундаменты всех видов;
звенья круглых труб:
прямоугольные трубы и их перекрытия при толщине засыпки 1 м и более;
стенки балок пролетных строений;
бетон растянутой зоны;
арматуру, работающую только на сжатие;
железобетонные опоры, в которых коэффициенты асимметрии цикла напряжений превышают в бетоне 0,6, в арматуре — 0,7.
Если при расчете на выносливость железобетонных опор и перекрытий труб напряжения в арматуре не превышают 75 % установленных расчетных сопротивлений (с учетом коэффициентов условий работы по пп. 3.26* и 3.39*), то дополнительные ограничения по классам арматуры и маркам стали, указанные в п. 3.33* для арматуры, рассчитываемой на выносливость при средней температуре наружного воздуха наиболее холодной пятидневки ниже минус 40 °С, могут не выполняться.
3.92*.Расчет на выносливость элементов (или их частей) предварительно напряженных железобетонных конструкций, отнесенных к категориям требований по трещиностойкости 2а или 2б (см. п. 3.95*), по сечениям, нормальным к продольной оси, следует производить по приведенным ниже формулам, подставляя абсолютные значения напряжений и принимая сечения элементов без трещин:
а) при расчете арматуры растянутой зоны:
sp.max = (spl - sel,c) + spg + spv £ mapl Rp ; (111)
sp.min = (spl - sel,c) + spg ; (112)
б) при расчете бетона сжатой зоны изгибаемых, внецентренно сжатых и внецентренно растянутых элементов:
sbc.max = sbcl + sbcg + sbcv £ mbl Rb ; (113)
sbc.min = sbcl + sbcg (114)
(знак напряжений при расчете статически неопределимых конструкций может изменяться на противоположный).
В формулах (111) — (114):
sp.max, sp.min -напряжения в напрягаемой арматуре соответственно максимальные и минимальные;
spl - установившиеся (за вычетом потерь) предварительные напряжения в напрягаемой арматуре растянутой зоны;
sel,c - снижение напряжения в напрягаемой арматуре растянутой зоны от упругого обжатия бетона согласно п. 3.93;
spg = nl sbtg - напряжения в арматуре от постоянной нагрузки;
spv = nl sbrv - напряжения в арматуре от временной нагрузки;
где nl - отношение модулей упругости согласно п. 3.48*:
mapl - коэффициент условий работы арматуры, учитывающий влияние многократно повторяющейся нагрузки согласно п. 3.39*;
Rp - расчетное сопротивление напрягаемой арматуры согласно п. 3.37*;
sbc.max, sbc.min - сжимающие напряжения в бетоне соответственно максимальные и минимальные;
sbcl -установившиеся (за вычетом потерь) предварительные напряжения в бетоне сжатой зоны;
sbrg, sbcv - напряжения в бетоне от постоянной нагрузки соответственно растянутой и сжатой зон;
sbn, sbcg -напряжения в бетоне от временной нагрузки соответственно растянутой и сжатой зон;
mbl - коэффициент условий работы бетона, учитывающий влияние многократно повторяющейся нагрузки согласно п. 3.26*;
Rb -расчетное сопротивление бетона сжатию согласно п. 3.24*.
П р и м е ч а н и е. При расчете как на выносливость, так и на трещиностойкость, при oпределении напряжений в бетоне с учетом приведенного сечения, в формулах напряжения в арматуре, напрягаемой на упоры, принимают без их снижения от упругого обжатия бетона (пои условии, если при расчете всю арматуру, имеющую сцепление с бетоном, включают в приведенные характеристики сечения).
3.93.Напряжения в напрягаемой арматуре следует вычислять с учетом снижения от упругого обжатия бетонаsel,c, которое при одновременном обжатии бетона всей напрягаемой на упоры арматурой необходимо определять по формуле
sel,c=nl sbp . (115)
При натяжении арматуры на бетон в несколько этапов снижение предварительного напряжения в арматуре, натянутой ранее, следует определять по формуле
sel,c=nl Dsb ml . (116)
В формулах (115) и (116):
nl —отношение модулей упругости согласно п. 3.48*;
sbp— предварительное напряжение в бетоне на уровне центра тяжести напрягаемой арматуры, вызываемое обжатием сечения всей арматуры;
Dsb— напряжение в бетоне на уровне центра тяжести арматуры, вызываемое натяжением одного пучка или стержня с учетом потерь, соответствующих данной стадии работы;
ml— число одинаковых пучков (стержней), натянутых после того пучка (стержня), для которого определяют потери напряжения.
3.94*.Расчет на выносливость элементов железобетонных конструкций с ненапрягаемой арматурой производится по формулам сопротивления материалов без учета работы бетона растянутой зоны. Этот расчет допускается производить по формулам, указанным в табл. 38*.
Формулы табл. 38* могут использоваться для определения по их левым частям значений sminиsmax при вычислении коэффициентовr, приведенных в табл. 26, 32* и 33*.
При расчете по формуле (121) следует учитывать указания п. 3.91* о расчете на выносливость также и преимущественно сжатой арматуры при знакопеременных напряжениях.
Аналогичным образом следует выполнять расчет внецентренно растянутых элементов. При расчете центрально-растянутых элементов все растягивающее усилие передается на арматуру.
Кроме расчета на выносливость сечения должны быть рассчитаны по прочности.
Таблица 38*
Характер работы элемента | Расчетные формулы | |
Изгиб в одной из главных плоскостей: | ||
проверка по бетону |
| (117) |
проверка по арматуре |
| (118) |
Осевое сжатие в бетоне |
| (119) |
Внецентренное сжатие: | ||
проверка по бетону | sp£ mbl Rb | (120)* |
проверка по арматуре | sp£ masl Rs | (121)* |
В формулах (117) — (121)*:
M и N - момент и нормальная сила;
Ired - момент инерции приведенного сечения относительно нейтральной оси без учета растянутой зоны бетона с введением отношенияnк площади всей арматуры согласно п. 3.48*;
x¢ - высота сжатой зоны бетона, определяемая по формулам упругого тела, без учета растянутой зоны бетона;
mbl, masl - коэффициенты, учитывающие асимметрию цикла напряжений в бетоне и в ненапрягаемой арматуре (с учетом сварных соединений) согласно пп. 3.26* и 3.39*, вводимые к расчетным сопротивлениям соответственно бетона Rbи арматуры Rs;
au, a¢u - расстояние от наружной соответственно растянутой и сжатой (или менее растянутой) граней до оси ближайшего ряда арматуры;
Ared - площадь приведенного поперечного сечения элемента с введением отношенияn, согласно п. 3.48* к площади поперечного сечения всей арматуры.
studfiles.net
Расчет на местное сжатие (смятие)
3.89*. При расчете на местное сжатие (смятие) элементов без косвенного армирования должно удовлетворяться условие
N £ jloc Rb,loc Aloc, (106)
где N - продольная сжимающая сила от местной нагрузки;
jloc - коэффициент, принимаемый равным: при равномерном распределении местной нагрузки на площади смятия - 1,00, при неравномерном распределении - 0,75;
Aloc - площадь смятия;
Rb,loc - расчетное сопротивление бетона смятию, определяемое по формулам:
Rb,loc = 13,5 jloc1 Rbt; (107)
jloc1 = £ 2. (108)*
В формулах (107) и (108*):
Rbt - расчетное сопротивление бетона растяжению для бетонных конструкций;
Ad - расчетная площадь, симметричная по отношению к площади смятия в соответствии со схемами, приведенными на черт. 9.
3.90. При расчете на местное сжатие (смятие) элементов с косвенным армированием в виде сварных поперечных сеток должно удовлетворяться условие
N £ Rb,red Aloc, (109)
где Аloc - площадь смятия;
Rb,red - приведенная прочность бетона осевому сжатию, определяемая по формуле
Rb,red = Rb jloc,b + j Rs jloc,s. (110)
В формуле (110):
Rb, Rs - в МПа;
jloc,b = £ 3;
j, m - соответственно коэффициент эффективности косвенного армирования и коэффициент армирования сечения сетками или спиралями [формулы (83), (84) и (87)] согласно п. 3.72*;
Черт. 9. Схемы расположения расчетных площадей Ad в зависимости от положения площадей смятия Аloc
jloc,s = 4,5 - 3,5 ;
Aef - площадь бетона, заключенного внутри контура сеток косвенного армирования, считая по их крайним стержням, при этом должно удовлетворяться условие Аloc < Аef £ Аd;
Ad - расчетная площадь, симметричная по отношению к площади смятия Аloc и принимаемая не более указанной на черт. 9.
Остальные обозначения следует принимать согласно требованиям п. 3.89*.
Бетон конструкции в зоне передачи на него сосредоточенных усилий (см. черт. 9) должен быть рассчитан на местное сжатие (смятие), а также по трещиностойкости с учетом местных растягивающих напряжений согласно указаниям п. 3.111*.
Расчет на выносливость
3.91*. Расчету на выносливость подлежат элементы железнодорожных мостов, мостов под пути метрополитена, совмещенных мостов и плиты проезжей части автодорожных и городских мостов; при толщине засыпки менее 1 м - ригели рам и перекрытия прямоугольных железобетонных труб, включая места их сопряжения со стенками.
На выносливость не рассчитывают:
бетонные опоры;
фундаменты всех видов;
звенья круглых труб:
прямоугольные трубы и их перекрытия при толщине засыпки 1 м и более;
стенки балок пролетных строений;
бетон растянутой зоны;
железобетонные опоры, в которых коэффициенты асимметрии цикла напряжений превышают в бетоне 0,6, в арматуре - 0,7.
Если при расчете на выносливость железобетонных опор и перекрытий труб напряжения в арматуре не превышают 75 % установленных расчетных сопротивлений (с учетом коэффициентов условий работы по пп. 3.26* и 3.39*), то дополнительные ограничения по классам арматуры и маркам стали, указанные в п. 3.33* для арматуры, рассчитываемой на выносливость при средней температуре наружного воздуха наиболее холодной пятидневки ниже минус 40 °С, могут не выполняться.
3.92*. Расчет на выносливость элементов (или их частей) предварительно напряженных железобетонных конструкций, отнесенных к категориям требований по трещиностойкости 2а или 2б (см. п. 3.95*), по сечениям, нормальным к продольной оси, следует производить по приведенным ниже формулам, подставляя абсолютные значения напряжений и принимая сечения элементов без трещин:
а) при расчете арматуры растянутой зоны:
sp.max = (spl - sel,c) + spg + spv £ mapl Rp; (111)
sp.min = (spl - sel,c) + spg; (112)
б) при расчете бетона сжатой зоны изгибаемых, внецентренно сжатых и внецентренно растянутых элементов:
sbc.max = sbcl + sbcg + sbcv £ mbl Rb; (113)
sbc.min = sbcl + sbcg (114)
(знак напряжений при расчете статически неопределимых конструкций может изменяться на противоположный).
В формулах (111) - (114):
sp.max, sp.min - напряжения в напрягаемой арматуре соответственно максимальные и минимальные;
spl - установившиеся (за вычетом потерь) предварительные напряжения в напрягаемой арматуре растянутой зоны;
sel,c - снижение напряжения в напрягаемой арматуре растянутой зоны от упругого обжатия бетона согласно п. 3.93;
spg = nl sbtg - напряжения в арматуре от постоянной нагрузки;
spv = nl sbrv - напряжения в арматуре от временной нагрузки;
где nl - отношение модулей упругости согласно п. 3.48*:
mapl - коэффициент условий работы арматуры, учитывающий влияние многократно повторяющейся нагрузки согласно п. 3.39*;
Rp - расчетное сопротивление напрягаемой арматуры согласно п. 3.37*;
sbc.max, sbc.min - сжимающие напряжения в бетоне соответственно максимальные и минимальные;
sbcl - установившиеся (за вычетом потерь) предварительные напряжения в бетоне сжатой зоны;
sbrg, sbcv - напряжения в бетоне от постоянной нагрузки соответственно растянутой и сжатой зон;
sbn, sbcg - напряжения в бетоне от временной нагрузки соответственно растянутой и сжатой зон;
mbl - коэффициент условий работы бетона, учитывающий влияние многократно повторяющейся нагрузки согласно п. 3.26*;
Rb - расчетное сопротивление бетона сжатию согласно п. 3.24*.
Примечание. При расчете как на выносливость, так и на трещиностойкость, при oпределении напряжений в бетоне с учетом приведенного сечения, в формулах напряжения в арматуре, напрягаемой на упоры, принимают без их снижения от упругого обжатия бетона (пои условии, если при расчете всю арматуру, имеющую сцепление с бетоном, включают в приведенные характеристики сечения).
3.93. Напряжения в напрягаемой арматуре следует вычислять с учетом снижения от упругого обжатия бетона sel,c, которое при одновременном обжатии бетона всей напрягаемой на упоры арматурой необходимо определять по формуле
sel,c = nl sbp. (115)
При натяжении арматуры на бетон в несколько этапов снижение предварительного напряжения в арматуре, натянутой ранее, следует определять по формуле
sel,c = nl Dsb ml. (116)
В формулах (115) и (116):
nl - отношение модулей упругости согласно п. 3.48*;
sbp - предварительное напряжение в бетоне на уровне центра тяжести напрягаемой арматуры, вызываемое обжатием сечения всей арматуры;
Dsb - напряжение в бетоне на уровне центра тяжести арматуры, вызываемое натяжением одного пучка или стержня с учетом потерь, соответствующих данной стадии работы;
ml - число одинаковых пучков (стержней), натянутых после того пучка (стержня), для которого определяют потери напряжения.
3.94*. Расчет на выносливость элементов железобетонных конструкций с ненапрягаемой арматурой производится по формулам сопротивления материалов без учета работы бетона растянутой зоны. Этот расчет допускается производить по формулам, указанным в табл. 38*.
Формулы табл. 38* могут использоваться для определения по их левым частям значений smin и smax при вычислении коэффициентов r, приведенных в табл. 26, 32* и 33*.
При расчете по формуле (121) следует учитывать указания п. 3.91* о расчете на выносливость также и преимущественно сжатой арматуры при знакопеременных напряжениях.
Аналогичным образом следует выполнять расчет внецентренно растянутых элементов. При расчете центрально-растянутых элементов все растягивающее усилие передается на арматуру.
Кроме расчета на выносливость сечения должны быть рассчитаны по прочности.
Таблица 38*
Характер работы элемента | Расчетные формулы | |
Изгиб в одной из главных плоскостей: | ||
проверка по бетону |
| (117) |
проверка по арматуре |
| (118) |
Осевое сжатие в бетоне |
| (119) |
Внецентренное сжатие: | ||
проверка по бетону | sp £ mbl Rb | (120)* |
проверка по арматуре | sp £ masl Rs | (121)* |
В формулах (117) - (121)*:
M и N - момент и нормальная сила;
Ired - момент инерции приведенного сечения относительно нейтральной оси без учета растянутой зоны бетона с введением отношения n к площади всей арматуры согласно п. 3.48*;
x¢ - высота сжатой зоны бетона, определяемая по формулам упругого тела, без учета растянутой зоны бетона;
mbl, masl - коэффициенты, учитывающие асимметрию цикла напряжений в бетоне и в ненапрягаемой арматуре (с учетом сварных соединений) согласно пп. 3.26* и 3.39*, вводимые к расчетным сопротивлениям соответственно бетона Rb и арматуры Rs;
au, a¢u - расстояние от наружной соответственно растянутой и сжатой (или менее растянутой) граней до оси ближайшего ряда арматуры;
Ared - площадь приведенного поперечного сечения элемента с введением отношения n, согласно п. 3.48* к площади поперечного сечения всей арматуры.
studfiles.net
Основы расчета железобетона. 200 вопросов и ответов, стр. №26
135. Для чего во внецентренно сжатых элементах устанавливают поперечную арматуру?
Устанавливают, как правило, не для восприятия поперечной силы (обычно прочности самого бетона для этого вполне достаточно), а для того, чтобы обеспечить устойчивость продольной арматуры. Под влиянием поперечных деформаций бетона продольные стержни искривляются наружу (выпучиваются), отрывают защитный слой и теряют устойчивость задолго до исчерпания своей прочности (рис. 68). Поперечные стержни препятствуют этому процессу. Их ставят с шагом s не более 15ds (ds - наименьший диаметр продольных стержней). Минимальные диаметры поперечных стержней назначают по условиям сварки: dsw ³ ds /3. Указанные требования, кстати, обязательны и для сжатой продольной арматуры изгибаемых элементов.
Поперечные стержни также сдерживают поперечные деформации бетона и, тем самым, несколько повышают его прочность на сжатие. Однако намного эффективнее в этом отношении косвенное армирование (см. вопрос 137).
136. Как обеспечивается устойчивость внецентренно сжатого элемента?
При внецентренном сжатии элемент искривляется, первоначальный эксцентриситет ео увеличивается, а вместе с ним растет и момент М от внешней нагрузки. Причем, чем больше доля постоянной и длительной нагрузки, тем больше деформации ползучести наиболее сжатых волокон, тем больше элемент искривляется, тем больше растет ео.
Учитывают это коэффициентом h =1/(1- N/Ncr), на который умножают ео (рис. 69). В приведенном выражении N - продольная сила от внешней нагрузки, Ncr - критическая сила, определяемая по формулам Норм проектирования. Она зависит от расчетной длины элемента, размеров сечения, величины эксцентриситета, доли постоянной и длительной нагрузки и др. Коэффициент h можно не учитывать, если гибкость элементаl = lo/i ≤ 14 (для прямоугольного сечения lo/h ≤ 4), где i - радиус инерции, h - высота сечения, lo - расчетная длина. Таким образом, условие устойчивости после корректировки величины ео сохраняет вид условия прочности.
137. Как быть, если прочность сжатого элемента недостаточна, а сечение увеличивать нельзя?
Если все пути (увеличение армирования, повышение прочности бетона) исчерпаны, можно применить или жесткое, или косвенное армирование. Жесткая арматура - это стальной сердечник сварного сечения или из прокатного двутавра. Вокруг сердечника по периметру сечения нужно обязательно устанавливать продольную гибкую арматуру с поперечной, соблюдая рекомендации о максимальном суммарном проценте армированияmmax= 15 %.
Косвенная арматура в виде поперечных сварных сеток или спиралей, охватывающих снаружи продольные стержни, препятствует поперечному расширению бетона и повышает его сопротивление продольному сжатию (см. вопрос 8). Разрушение элемента происходит, когда косвенная арматура достигает предела текучести. Следует, однако, помнить, что сетки косвенного армирования затрудняют укладку и уплотнение бетона. Кроме того, косвенное армирование эффективно только при малых эксцентриситетах и при небольшой гибкости элементов.
138. Как рассчитывают на сжатие бетонные сечения?
Принцип расчета основан на двух условиях равновесия: усилие от внешней нагрузки N и равнодействующая внутренних усилий в бетоне Nb должны быть равны по величине и расположены вдоль одной оси. При этом криволинейную эпюру напряжений в сжатой зоне (см. вопрос 4) заменяют на равновеликую прямоугольную. Тогда условие прочности имеет вид: N ≤ aRbAb, где Ab – площадь сжатой зоны, центр тяжести которой совпадает с точкой приложения силы N (рис. 70,а), a – коэффициент, учитывающий вид бетона (для тяжелого бетона a = 1). Таким образом, расчет сводится к определению площади Ab при известном положении ее центра тяжести.
В общем виде задача решается через равенство статических моментов Si частей площади Ab, лежащих по обе стороны от ее центра тяжести. Для прямоугольного сечения Ab = bx, гдеx = h – 2e0. Для таврового сечения нужно учитывать положение ц.т. Ab (в полке или в стенке). В примере, показанном на рис. 70,б, Ab можно определить, разделив сжатую зону на три части и подсчитав статические моменты площади каждой части относительно ц.т. Ab. Тогда S1 = S2 + S3, или b´f(h2)2/2 = b´f(h3)2/2 + bh4 (h3+ + h4 /2), где h2 = y – e0,h3 = h´f – h2, h4 – искомая величина. Найдя h4, получим Ab = b´f h´f + bh4. Если прочность недостаточна, то следует увеличить либо Rb, либо размеры сечения(с увеличением размеров увеличивается Ab).
Как и для железобетонных элементов, к эксцентриситету, полученному из статического расчета, добавляется случайный эксцентриситет ea, а продольный изгиб учитывается умножением e0 на коэффициент h (см. вопрос 136). Величина эксцентриситета e0h не должна превышать 0,9у, где y – расстояние от центра тяжести сечения до крайнего сжатого волокна.В ряде случаев (некоторые конструкции гидротехнических и др. специальных сооружений, карнизы, парапеты) прочность бетонных сечений исчерпывается прочностью растянутой зоны. Поэтому расчет прочности таких конструкций сводится к расчету по образованию трещин (см. вопрос 158).
139. Почему при внецентренном сжатии площадь сжатой зоны в бетонном сечении не определяют так, как в железобетонном?
Если определять из условия Ab = N/Rb, то площадь сжатой зоны будет зависеть только от величины N и не зависеть от точки приложения последней. А это приведет к тому, что ось равнодействующей внутренних усилий в бетоне Nb не будет совпадать с осью силы N, т.е. равновесие не будет обеспечено. Хорошо было бы метод расчета бетонных сечений перенести и на железобетонные, тогда не возникало бы абсурдной ситуации, изложенной в ответе 128. Однако практически осуществить это трудно, поскольку появляется еще одна неизвестная и расчет резко усложняется, особенно для случая малых эксцентриситетов.
140. Что такое местное сжатие (смятие)?
Это приложение нагрузки не по всей площади поперечного сечения, а только по ее части, что более опасно, так как вызывает высокую концентрацию напряжений в бетоне, приводит к образованию местных трещин и преждевременному разрушению (рис. 71).
Рис. 71
Рассчитывают прочность из условия N ≤ YRb,locAloc1, где Rb,loc - расчетное сопротивление бетона смятию, Аloc1 - площадь смятия,Y - коэффициент, зависящий от равномерности приложения силы N по площади смятия и учитывающий, по существу, полноту эпюры давления. При равно- мерном распределении нагрузки (прямоугольной эпюре давления) Y =1, при неравномерном (под опорами балок, перемычек и т.п. элементов) – Y = 0,75. Незагруженная часть бетона сдерживает поперечные деформации смятия, играет роль обоймы, поэтому Rb,loc > Rb. Значение Rb,loc определяется по формуле: Rb,loc = Rb , где Аloc2 – расчетная площадь смятия, включающая Аloc1 и окружающие ее участки. Величина Аloc2 зависит от схемы приложения нагрузки (схемы приведены в Нормах).
Страницы:
www.betontrans.ru
Расчет опорной площадки стены на смятие
Сначала определимся с терминами:
Что такое опорная площадка?
Когда Вы укладываете на верх стены металлическую, железобетонную или деревянную балку, то нагрузка от этой балки будет передаваться не на всю площадь стены, а только на площади контакта опорного участка балки со стеной. Участок стены, на который передается нагрузка от балки и называется опорной площадкой. Для железобетонных плит ширина опорной площадки совпадает с шириной плиты.
Что такое смятие?
В проспектах, рекламирующих достоинства блоков из ячеистых бетонов всегда упоминается простота и легкость обработки таких блоков. Распиливать блоки из ячеистых бетонов можно даже обычной ножовкой по дереву. Но при этом почему-то не упоминается, что такое легкое распиливание блоков возможно в частности из-за смятия. Смятие - это необратимая, точнее говоря - неупругая деформация материала, а если сказать еще проще, то это частичное разрушение материала. В некоторых случаях ничего плохого в смятии нет. Частичное смятие опорной площадке позволяет выровнять значение действующих на материал напряжений. При этом вся конструкция немого "просядет" и все. Но если нагрузки, приводящие к смятию, очень большие, то это приводит к полному разрушению материала в области действия нагрузок. Именно это и происходит при распиливании ячеистобетонных блоков. Поэтому к приводимым в рекламных проспектах цифрам, обозначающим прочность ячеистых бетонов при сжатии и сопоставимым с прочностью тяжелых бетонов классов В10-В15 относиться нужно очень осторожно. Как говорится лучше семь раз рассчитать, чем один раз оказаться под разрушающейся конструкцией. Сейчас мы этим и займемся:
Первый метод проверки прочности опорных площадок стены (столба) на смятие
(хорош для оценочного расчета)
Этот метод базируется на следующих расчетных предпосылках:
1. Нагрузка на опорную площадку, это опорная реакция балки или перемычки плюс нагрузка от вышележащих стен, перекрытий, кровли и т.п.
2. Чтобы вычислить касательные напряжения, действующие в материале стены или столба на опорной площадке (причем, как в материале опорного участка балки или плиты перекрытия, так и в материале стены или столба эти напряжения по принципу равнодействия сил равны), нужно просто разделить имеющуюся нагрузку, на площадь опорной площадки и потом сравнить полученное значение с максимально допустимым для данного материала:
σ ≤ Rсм (148.1.1)
где σ - значение касательных напряжений, возникающих в материале стены;
Rсм - расчетное сопротивление смятию.
Как видим алгоритм расчета достаточно простой. Но чтобы все это не оставалось туманными высказываниями дельфийского оракула, добавим эту выжимку абстрактного мышления в закваску конкретного примера: Стоится 3-этажный дом со стенами из газосиликатных блоков с металлическими балками перекрытия длиной 6,4 метра (расчетная длина 6 метров) с несущими внутренними и наружными стенами толщиной 40 см. Для перемычек будут использоваться железобетонные балки на всю ширину стены. Представить это поможет следующий условный план:
Рисунок 246.1 а) примерный план первого этажа б) план перемычек и балок перекрытия
в) условная цветовая диаграмма внутренних напряжений в материале стен.
Очевидно, что самыми загруженными будут блоки стен первого этажа. А представленная на рисунке 246.1.в) условная цветовая диаграмма позволяет вычленить блоки, в которых будут возникать максимальные сжимающие напряжения. Не смотря на то, что максимальный пролет будет у проема шириной 3 м, самые нагруженные блоки будут у проема шириной 1.6 м по той простой причине, что на блоки проема шириной 3 м нагрузка от перекрытий передаваться не будет, в то время как блоки проема шириной 1.6 м будут воспринимать нагрузку не только от вышележащей стены, но и от балок перекрытия.
Так как ширина металлических балок перекрытия меньше ширины железобетонных перемычек, то следует проверить как опорную площадку под любой из балок перекрытия на смятие, так и опорную площадку под железобетонной перемычкой над проемом 1.6 м. Данный метод можно назвать поиском слабого звена. Таким образом если максимально нагруженные блоки выдержат нагрузку, то за остальные блоки беспокоиться нечего. Ну а проверка стены на прочность - это совсем другой расчет.
Итак, предполагается, что наружные стены будут из газосиликатных блоков шириной 40 см, имеющих плотность D500. Так как такие блоки использовать в качестве конструкционных нужно только после соответствующего расчета, а лучше использовать их только как теплоизоляционные, то именно такие блоки и взяты для примера. Расчетное сопротивление сжатию для таких блоков, если верить рекламным проспектам может достигать невиданных значений и 40 и 60 кг/см2, однако для дальнейших расчетов лучше принять Rсм =16.2 кг/см2, как наиболее адекватное (почему, подробно излагается все в той же статье по расчету стены на прочность, к тому же именно такое значение следует принимать для блоков с классом по прочности на сжатие В2.5). Чтобы не усложнять изложение материала дополнительными расчетами, примем распределенную нагрузку на перекрытие 500 кг/м, а нагрузку от чердачного перекрытия и кровли вместе с лежащим на ней снегом и дующим на нее ветром в два раза меньше, т.е. 250 кг/м, ширину металлических балок примем равной 10 см (двутавр №20) шаг балок перекрытия - 1 м, ширина железобетонных перемычек равна ширине стены и = 40 см, длина опорных участков балок перекрытия = 15 см, длина опорных участков перемычек равна 20 см.
Нагрузка от перекрытий 1 этажа составит 500·6/2 = 1500 кг. Нагрузка от перекрытия 2 этажа и кровли перераспределится в материале стен, при шаге балок 1 м и ширине площадки 10 см можно было бы предположить что нагрузка будет меньше в 10 раз, однако распределится не равномерно, а потому предположим, что нагрузка на опорную площадку уменьшится в 5 раз для внутренней несущей стены, тогда нагрузка от перекрытия 2 этажа и кровли составит примерно (500·6/2 + 250·6/2)/5 = 500 кг.
Действовать эта нагрузка будет на опорную площадку размерами 10х15 см. Тогда нагрузка от веса стен 2 и 3 этажа на эту площадку при высоте этажей 3 м составит 6·0.15·0.1·500 = 45 кг. Как видим, нагрузка от собственного веса стены намного меньше нагрузки от перекрытия, тем не менее, суммарная нагрузка на опорную площадку под балкой перекрытия составит N =1500 + 500 + 45 = 1995 кг. При длине опорной площадки lоп = 15 см и ширине опорной площадки b = 10 см в газосиликате на опорных площадках будут возникать сжимающие напряжения:
σ = N / S = 1995/(15·10) = 13.3 кгс/см2 < R = 16.2 кгс/см2 (246.1.1)
где S - площадь опорной площадки.
Как видим, полученное значение внутренних напряжений меньше предельно допустимых. Вроде волноваться не о чем, но пока не будем забегать вперед и посмотрим, что будет происходить на опорных площадках под перемычкой над пролетом 1.6 м.
Как видно из плана 1 этажа, на эту перемычку попадает одна балка перекрытия посредине и еще две балки по краям. Поэтому нагрузка на опорные площадки под этой перемычкой составит только от балок перекрытия 1500·3 = 4500 кг. При одинаковых планах 2 и 3 этажа нагрузка от перекрытий и кровли также уменьшится, но в этом случае уменьшение будет не таким значительным из-за большей длины опорной площадки и из-за того, что проемы уменьшают в двое перераспределение нагрузки. Предположим, что нагрузка от остальных перекрытий и кровли уменьшится в 2 раза и составит (1500·3 + 750·3)/2 = 3375 кг. При ширине перемычки 40 см и длине опорной площадки 20 см нагрузка от собственного веса вышележащих стен составит 6·0.4·0.2·500 = 240 кг.
Суммарная нагрузка на опорную площадку под перемычкой составит N =4500 + 3375 + 240 = 8115 кг. При длине опорной площадки lоп = 20 см и ширине опорной площадки b = 40 см в газосиликате на опорных площадках будут возникать касательные напряжения:
σ = N / S = 8115/(40·20) = 10.14 кгс/см2 < R (246.1.2)
И тут у нас все нормально, но!
Ни металлический двутавр, ни железобетонная балка бесконечной жесткостью не обладают, а значит, под действием нагрузки будут деформироваться, проще говоря, прогибаться. В свою очередь материал опорной площадки также будет деформироваться, при этом внутренние напряжения в материале опорной площадки будут распределяться не равномерно. Максимальные сжимающие напряжения будут на краю стены (в начале опорной площадки), а минимальные - ближе к середине стены. Следовательно рассчитывать опорную площадку нужно на бóльшие напряжения.
Для более точного расчета следует знать угол наклона балок на опорах, после чего можно определить длину опорной площадки, при которой эпюра распределения напряжений будет треугольной и сравнить эту длину с принятой. Впрочем, есть и более простой способ: можно просто умножить полученное значение сжимающих напряжений на коэффициент неопределенности (назовем его так) от 1.3 до 1.5 и сравнить полученное значение с максимально допустимым. Если воспользоваться рекомендациями СТО 501-52-01-2007, то следует принимать значение коэффициента около 1.67, и хотя мне такое значение кажется несколько завышенным из-за априорного принятия треугольной эпюры распределения напряжений по длине опорной площадки, тем не менее запас еще никогда и никому не помешал.
Проверка прочности опорных площадок стены из газосиликатных блоков на смятие
(согласно СТО 501-52-01-2007)
Расчет производится по следующей формуле:
N ≤ ψRb,locS (246.2.1)
где ψ - коэффициент полноты эпюры напряжений по длине опорной площадки, принимается ψ = 1 при равномерном распределении напряжений (при прямоугольной эпюре) и ψ = 0.5 при треугольной эпюре напряжений (под концами балок, перемычек, прогонов).
Rb,loc - расчетное сопротивление кладки смятию, определяется по формулам:
Rb,loc = φbR (246.2.2)
φb = (Sloc2/S)1/3 ≤1.2 (246.2.3)
где Sloc2 - расчетная площадь смятия, определяемая согласно рисунка 246.2:
Рисунок 245.2
Для бетонной перемычки расчетная площадь смятия определяется по верхней левой схеме и составляет 2S, а для металлических балок, расположенных с шагом 1 м, больше 3S. Однако большого значения это не имеет так как значение коэффициента φb не следует принимать больше 1.2. Тогда принимая треугольную эпюру получим
для железобетонной перемычки
N = 8115 кг > 0.5·16.2·1.2·800 = 7776 кг (246.2.1)
для металлических балок
N = 1995 кг > 0.5·16.2·1.2·150 = 1458 кг (246.2.1)
В обоих случаях требования СТО не соблюдаются, а потому следует использовать бетонные опорные подушки под металлические балки, а еще лучше железобетонный пояс по всем несущим стенам для более равномерного перераспределения нагрузки. Так, например, бетонная опорная подушка высотой 20 см и длиной 60 см увеличит площадь опоры приблизительно в 5 раз и таким образом создаст дополнительный запас по прочности. Тем не менее подушки допускается использовать для повышения прочности не более, чем на 50%. А если четко придерживаться рекомендаций СТО 501-52-01-2007, то под железобетонную перемычку вообще следует выложить кирпичные столбы, сделать ж/б колонны или полностью выложить внутреннюю стену из кирпича. Можно также уменьшить проем, чтобы на перемычку попадало не более 2 балок перекрытия или изменить шаг балок перекрытия.
doctorlom.com