Новая разновидность бетона. Полимерный цемент
Полимерные цементы
Рекомендация
Категории статей
Полимерные цементы
Полимерными цементами материалы называются потому, что в качестве жидкости используется раствор, содержащий органические кислоты — полимеры. Полимерные цементы отличаются от минеральных тем, что способны химически связываться с тканями зуба. Жидкая фаза их представлена раствором полиакриловой кислоты. Карбоксильные группы полиакриловой кислоты образуют химическую связь с кальцием тканей зуба. В некоторых цементах обезвоженная кислота находится вместе с порошком. В этом случае порошок замешивается на дистиллированной воде.
Поликарбоксилатный цемент (цинкполиакрилатный). Был первым адгезивным материалом, разработанным для использования в стоматологии. Многозвеньевые длинные молекулы полиакриловой кислоты взаимодействуют, с одной стороны, с оксидом цинка, а с другой — с кальцием твердых тканей зуба. Таким образом, между пломбировочным материалом и тканями зуба образуется не ретенционная (механическая) связь, а ионообменная (химическая). Такое соединение способствует образованию между искусственным материалом и зубом весьма плотного контакта, не допускающего микроподтекания.
Поликарбоксилатный цемент имеет более кислую реакцию сразу после замешивания, по сравнению с цинк-фосфатным, но эта кислота быстро нейтрализуется. Более того, крупные молекулы полиакриловой кислоты слабо диссоциированы и не могут проникнуть даже через тонкий слой дентина, поэтому Поликарбоксилатный цемент считается биосовместимым. Поликарбоксилатный цемент используется в качестве прокладочного материала и для цементирования коронок. К сожалению, он растворяется в ротовой жидкости и не обладает высокой прочностью.
Замешивается поликарбоксилатный цемент в пропорциях, определенных производителем, обязательно на невпитывающих поверхностях - стекле или специальной бумаге. Жидкость следует наносить непосредственно перед смешиванием во избежание потери влаги. Консистенция замешанного цемента более сметанообразная, чем у цинк-фосфатного цемента, его масса при этом должна течь со шпателя под действием собственной тяжести. Обычное время замешивания - 30 - 60 с. Рабочее время твердения - 2,5 - 6 мин - может быть увеличено до 15 мин за счет замешивания на охлажденном стекле. Во время работы необходимо обращать внимание на блеск поверхности цемента. При потускнении цемент теряет адгезивные свойства и использовать его уже нельзя. Время первичного отверждения обычно составляет 7 - 9 мин.
Адгезия к тканям зуба невелика и составляет: к эмали - от 2,5 до 13 МРа, к дентину - около 2,1 МРа. Клинические испытания не показали преимуществ в ретенции коронок при использовании поликарбоксилатного цемента по сравнению с цинк-фосфатным.
Поликарбоксилатные цементы: «Poly-F Plus», Dentsply; «Carboxylate Cement», Heraeus Kulzer; «Durelon», Espe; «Carboco», Voco и др.
Стеклоиономерные (полиалкеноатные) цементы. Официальное название стеклоиономерных цементов (СИЦ), согласно классификации ISO — стеклополиалкеноатные цементы, указывает на принципиальный их состав. Порошок СИЦ состоит в основном из кальций-фторалюмо-силикатного стекла: SiO2 - А12О3 - CaF2 - Na3AlFg - А1РО4.
Частички порошка измельчают и просеивают, так что их средний размер составлет 8 - 13 мкм. Размер частиц определяет основные свойства цемента, поэтому производители модифицируют порошок самыми разными способами. Оксид цинка, бариевое стекло, стронций, лантан добавляют для увеличения рентгеноконтрастности. В так называемых «безводных» цементах в порошок вводят кристаллическую полиакриловую кислоту, вступающую в кислотно-основную реакцию только после растворения в воде («BaseLine», «AquaCem», Dentsply; «Aqua lonofil», Voco). Такая комбинация компонентов позволяет увеличивать срок хранения стеклоиномерных цементов, а также достигать во время замешивания очень жидкой консистенции цемента, используемого для цементирования или линейной прокладки.
Стеклоиномерные цементы образованы реакционноспособным кальций-фторалюмосиликатным стеклом и полиакриловой кислотой. Основным их признаком служит кислотно-основная реакция отверждения. В настоящее время выделяют два вида СИЦ: классические и упрочненные.
Классическими называют самоотверждаемые стеклоиномерные цементы, в состав которых входят минеральный реактивный порошок и жидкость на основе полиакриловой кислоты («Fuji I», GC; «Ketac-Cem», Espe; «lonobond», Voco; «Glass-ionomer cement», Heraeus Kulzer).
Упрочненные стеклоиномерные цементы содержат те или иные добавки, увеличивающие прочность. Среди упрочненных цементов различают: полимермодифицированные («Vitrebond», ЗМ; «Vivaglass Liner», Vivadent; «Fuji Lining LC», GC), полимер-содержащие («ChemFlex», Dentsply), металлосодержащие («Argion», Voco) стеклоиномерные цемены и церметы («Ketac-silver», «Chelon-silver», Espe; «Miracle Mix», GC).
Отверждение классических, полимерсодержащих, церметов и металлосодержащих стеклоиномерных цементов происходит обычно за счет кислотно-основной реакции, т. е. все они самоотверждаемые. Полимермодифицированные стеклоиномерные цементы отверждаются в результате протекания кислотно-основной реакции цемента и свободнорадикальной реакции полимера. В отличие от других стеклоиномерных цементов, полимермодифицированные цементы являются материалами двойного и тройного отверждения. С момента появления стеклоиномерных цементов на стоматологическом рынке они стали неотъемлемой частью ежедневной практики, обеспечивая сохранение зубной структуры за счет ее реминерализации и при этом отвечая эстетическим параметрам. Одной из важнейших черт стеклоиномерных цементов является способность химически связываться со структурами зуба благодаря ионообменным процессам, длительно выделять ионы фтора, а также кумулировать эти ионы из внешней среды.
Принципиальные отрицательные качества стеклоиномерных цементов заключаются в невысокой механической прочности, шероховатости поверхности, опаковости, длительности окончательного твердения. В состав порошка полимерсодержащих стеклоиномерных цементов входят частички или волокна отвержденного полимера.
Порошок полимермодифицированного стеклоиномерного цемента кроме компонентов классического цемента содержит полимерные составляющие, обеспечивающие свободнорадикальную реакцию полимеризации. В состав порошка цеметов входят частички стекла, сплавленного с металлами, такими как золото, серебро и др. В порошок металлосодержащих стеклоиномерных цементов добавляются опилки металлов или порошок амальгамы.
Жидкость классических, полимерсодержащих, металлосодержащих стеклоиномерных цементов и церметов, называемая раствором полиакриловой кислоты, состоит из водного раствора кополимера акриловой и итаконовой (или малеиновой) кислот. Использование кополимеров и различных добавок способствует повышению стабильности жидкости. Для контроля реакции отверждения вводят небольшое количество тарта-ровой кислоты. Она активирует диссоциацию ионов из стекла. Полиакриловая кислота не обладает структурной устойчивостью, может загустевать и терять свои свойства. Поэтому некоторые цементы содержат кристаллы сухой полиакриловой кислоты в составе порошка. В так называемых «безводных» цементах в качестве жидкости используется вода или раствор тартаровой кислоты.
Жидкость полимермодифицированных СИЦ содержит 15 - 25 % полимера, обычно ГЭМА (англ. НЕМА, произносится как «хима») - гидроксиэтилме-V такрилат.), а также менее 1 % полимеризуемых групп и фотоинициатора. После начальной световой активации полимера обычная кислотно-основная реакция проходит такие же стадии, как и в классических СИЦ. В зависимости от пропорции смешивания в таком цементе остается от 4,5 до 15 % несвязанной ГЭМА. Так как ГЭМА является гидрофильным веществом, то после затвердевания цемента он может выделяться в окружающие ткани или напитываться водой, что ведет в некоторой степени к деградации структуры. Некоторые производители вводят катализаторы, способствующие прохождению свободнорадикальной реакции, увеличивая степень полимеризации мономера и уменьшая поглощение воды.
Процесс твердения классического, полимерсодержащего и металлсодержащего стеклоиономерных цементов и церметов проходит в три стадии.
Стадия 1. Поверхностный слой стеклянных частиц атакуется поликислотой с образованием диффузной адгезии между стеклом и матрицей. Около 20 - 30 % стекла растворяется, и различные ионы (включая ионы кальция, фтора, алюминия) выделяются, формируя цементную соль.
Стадия 2. В течение этой стадии ионы кальция и алюминия связываются с полианионами через карбоксильные группы. Начальное твердение под действием ионов кальция занимает 4 - 10 мин. Дальнейшее созревание происходит в течение 24 ч за счет менее мобильных ионов алюминия. Ионы фтора и фосфат-ионы образуют нерастворимые соли и комплексы. При участии ионов натрия на поверхности частиц стекла образуется ортокремниевая кислота, переходящая в кремниевый гель, который способствует связыванию порошка с матрицей.
Стадия 3. Является стадией созревания. Во время нее происходит прогрессивная гидратация солей матрицы, приводящая к резкому усилению физических свойств.
В результате прохождения этих стадий поверхность стеклянных частиц растворяется с высвобождением ионов кальция и алюминия, которые затем вступают во взаимодействие с полиакриловой кислотой, формируя кальциевые и алюминиевые полиакрилатные цепи. Кальциевые - формируются первыми, обеспечивая первичное отверждение, но они неустойчивы и подвержены гидратации. Алюминиевые - формируются позже и, будучи нерастворимыми, обеспечивают физические, прочностные свойства пломбы. Протекающая в этом случае кислотно-основная реакция ведет к диффузной адгезии частиц стекла к матрице. Полиакрилатные цепи создают пористое пространство, которое позволяет гидроксид-ионам и ионам фтора мигрировать. Эти три стадии отверждения относятся к длительным реакциям, которые продолжаются, как минимум, 1 мес, а возможно и дольше.
Процесс отверждения полимермодифицированных стеклоиномерных цементов обеспечивается протеканием двух реакций: кислотно-основной реакции нейтрализации и свободнорадикальной полимеризации акрилатов.
Полимеризация акрилатов может инициироваться при смешивании компонентов (химическая активация), а также при разложении инициатора фотополимеризации под действием света (световая активация). Таким образом, полимермодифицированные стеклоиномерные цементы могут быть самоотверждаемыми (двойного отверждения) и тройного отверждения (фото- и химическая инициация отверждения полимера и кислотно-основная реакция). После замешивания и укладки пломбы экспозиция света вызывает быстрое отверждение материала на глубину проникновения света. В этом участке происходит полимеризация ГЭМА и метакрилатных мономеров, после чего цемент считается клинически затвердевшим. Однако полные физические свойства достигаются через несколько дней по завершении кислотно-основной реакции, которая происходит аналогично стеклоиномерным цементам химического отверждения, хотя и в меньшей степени.
Соотношение жидкости и порошка меняет физические свойства стеклоиномерных цементов. Чем больше порошка - тем прочнее цемент, но при этом весь порошок должен быть увлажнен жидкостью.
Затвердевший стеклоиномерный цемент содержит частицы непрореагировавшего стекла, окруженные кремниевым гидрогелем и внедренные в полисолевую матрицу поперечно связанной полиакриловой кислоты. Эта структура рассматривается как пористая, способная свободно пропускать ионы малого размера, такие как гидроксидные и ионы фтора. Структура содержит как связанную, так и свободную воду. На ранних стадиях затвердевания избыток воды может поглощаться кальциевыми полиакрилатными цепями. Однако их вымывание водой приводит к нарушению структуры цемента. При пересыхании цемента на этом этапе несвязанная вода испаряется, что также обусловливает нарушение структуры стеклоиномерных цементов.
В полимермодифицированных стеклоиномерных цементах на ранних этапах затвердевания миграция влаги блокируется, но дальнейшее развитие кислотно-основной реакции и созревание цемента не прекращаются.
Стеклоиномерные цементы выпускают для ручного замешивания в виде системы порошок - жидкость или для автосмешивания в специальных капсулах при помощи прибора амальгаматора.
В капсулированных стеклоиномерных цементах пропорция устанавливается производителем и не зависит от врача. Важно тщательно изучить инструкцию, чтобы четко знать, для какой цели предназначен цемент, какое время замешивания, какое рабочее время и время отверждения. Вносить материал в полость зуба после замешивания нужно достаточно быстро. Потеря эластичности или блеска цементной массы служат признаками непригодности для использования.
При ручном замешивании необходимо строгое соотношение порошка и жидкости, определенное производителем. Внимание должно быть уделено как возможности поглощения воды, так и ее потери. При замешивании цемента главной задачей является не растворение порошка в жидкости, что достигается при перетирании, а смачивание частичек порошка жидкостью, так как физические свойства цемента будут зависеть от количества нерастворенного стекла. После первичного затвердевания поверхность пломбы из классического стеклоиномерного цемента рекомендуется защитить полимерным лаком или адгезивной системой для предотвращения впитывания влаги.
Обработка реставраций из стеклоиномерных цементов должна проводиться на следующий день и под обильным водяным орошением. Полимермодифицированные стеклоиномерные цементы можно обрабатывать сразу после первичной полимеризации, но открытые поверхности лучше затем покрыть изолирующим веществом.
Одно из важнейших свойств стеклоиномерных цементов заключается в их способности к химической адгезии к минерализованным тканям. Механизмы такой адгезии основаны на процессах диффузии и адсорбции. Адгезия инициируется при контакте полиакриловой кислоты цемента с твердыми тканями зуба. Фосфатные ионы из гидроксиапатита замещаются на карбоксильные группы полиакриловой кислоты, при этом каждый фосфатный ион захватывает ион кальция для поддержания нейтральности. Таким образом, на границе зуба и пломбировочного материала образуется ионообменная химическая связь за счет кальций-фосфатполиакриловой кристаллической структуры. При достижении такой связи невозможно нарушить адгезивное соединение тканей зуба и цемента. Однако если реставрация все-таки отделяется от зуба, значит, произошел когезивный отрыв в среде одного из них. Поскольку прочность на разрыв у СИЦ невысока, то ионообменный слой чаще остается прикрепленным к зубу.
Адгезия к органическим компонентам дентина может происходить также за счет водородной связи или образования металлических ионных мостиков между карбоксильными группами поликислоты и коллагеном дентина. СИЦ обладают очень хорошей биосовместимостью. Доказано, что зубной налет на поверхности стеклоиономера не формируется, а это значит, что окружающие мягкие ткани не подвергаются воспалению. Наиболее патогенный микроорганизм Streptococcus mutans не может развиваться в присутствии ионов фтора.
Реакция пульпы на стеклоиномерный цемент обычно благоприятная. Свежезамешанный цемент имеет очень низкое значение рН 0,9 - 1,6, но уже в течение первого часа этот показатель становится почти нейтральным. Более того, дентин является очень хорошим буфером, и даже тонкий его слой хорошо защищает пульпу. Некоторые авторы отмечают незначительную воспалительную реакцию, которая полностью исчезает в течение 10 - 20 дней. Поэтому прокладка под стеклоиномерный цемент не требуется, исключение может быть сделано при локализации в проекции пульпы, над которой менее 1 мм дентина. При цементировании коронок для предотвращения повышенной чувствительности не рекомендуется обрабатывать витальные зубы кислотой, пусть даже и органической. Обработка зубов под коронки сама по себе травматичная манипуляция, особенно если учесть, что такие зубы зачастую уже имеют пломбы, т. е. налицо хроническое воспаление пульпы. Напротив, отпрепарированные зубы рекомендуется обработать минеральным составом или покрыть их лаком или адгезивным агентом перед снятием слепка.
Образец стеклоиономерного цемента в процессе отверждения дает усадку около 3 %, если соблюдены правила замешивания и сохранен водный баланс. На практике, учитывая длительность реакции отверждения, а также развитие адгезии к стенкам полости посредством образования ионообменной связи, усадка практически нивелируется.
Медленно твердеющие цементы типа 2.1 (реставрационный эстетический), если они не защищены от внешней влаги, впитывают воду, что уменьшает усадку, но и способствует ослаблению его физических характеристик.
Полимермодифицированные стеклоиномерные цементы содержат небольшое количество полимера, поэтому усадка на начальном этапе затвердевания ничтожно мала. Усадка вследствие последующей кислотно-основной реакции развивается очень медленно и контролируется процессами адгезии. В отличие от них, светоотверждаемые композиты демонстрируют немедленную усадку, которая способствует развитию «стресса» на границе пломбировочный материал - зуб.
Большинство стеклоиномерых цементов являются более рентеноконтрастными, чем дентин и эмаль, однако некоторые эстетические материалы типа 2.1 (реставрационный эстетический) не обладают таким свойством вообще. Это вызвано требованиями прозрачности, так как введение рентгеноконтрастных веществ уменьшает прозрачность стеклоиномерного цемента.
Выделение ионов фтора также служит важнейшей характеристикой стеклоиономерных цементов. Эта способность проявляется не только в первые дни после постановки пломбы, но и в течение всего срока ее существования. Большое их количество выделяется в первые несколько дней, затем выделение значительно уменьшается и стабилизируется к 2 - 3 мес существования реставрации. Дальнейшее долговременное выделение фтора достаточно для защиты от кариеса окружающих твердых тканей зубов. Исследования доказывают выделение ионов фтора на протяжении, как минимум, 8 лет.
Вначале фтор выделяется с поверхности стеклянных частичек, после чего он фиксируется в кремниевом гидрогеле и, не являясь его структурной частью, может свободно перемещаться. Степень его диффузии зависит от концентрации фтора в ротовой жидкости. При пониженной концентрации происходит его выделение. Повышение концентрации ионов фтора за пределами пломбы может приводить к их поглощению структурой цемента. Таким образом, стекло-иономерные материалы могут рассматриваться в качестве резервуара ионов фтора.
Стеклоиономерные цементы обладают рядом неоспоримых преимуществ перед остальными материалами, однако не являются универсальными пломбировочными материалами. Все современные пломбировочные материалы имеют ограничения, но если использовать их по показаниям, они позволяют достигать наилучшего результата. Уже около 30 лет стеклоиномерные цементы используются в практике, демонстрируя прекрасные качества, описанные выше.
Ионообменная химическая связь с тканями зуба является уникальным свойством этих материалов, особенно учитывая проблему микрощелей, существующую для всех пломбировочных материалов. Стеклоиномерные цементы также являются резервуаром и источником ионов фтора в течение всего существования реставрации, способствуя реминерализации и укреплению тканей зуба. Для практического врача не менее важна также простота использования этих материалов в работе и их относительно невысокая стоимость.
Источник: stomfak.ru
Попробуйте найти больше информации на стоматологическом портале, Вы сможете выбирать публикации из категорий или найти при помощи встроенного поиска от компании Googlenadent.ru
что это такое, характеристики, приготовление
Без бетонных смесей, как и много лет назад, в современном строительстве обойтись практически невозможно, ведь они обеспечивают высокую прочность и надежность, а также долговечность различных зданий. Однако на современном этапе разработано достаточно много инновационных разновидностей бетонов, которые по различным характеристикам существенно превосходят традиционную смесь воды, цемента, песка и наполнителей. Одним из современных примеров объединения химической промышленности и инновационных технологий в строительстве является разработка полимерного бетона, о свойствах которого мы Вам и расскажем. Также его нередко называют геополимерным или композитным бетоном.
Что такое полимерный бетон?
Основным отличием полимерного бетона от обычного является то, что при его производстве в исходный раствор добавляются высокомолекулярные органические соединения. Если говорить простым языком, то в составе такого раствора роль связующего вещества играют смолы: эпоксидные, поливиниловые, полиэфирные, полиуретановые, метилметакрилатные или другие. Также в состав данного материала для повышения различных свойств добавляют такие компоненты как растворители, отвердители, катализаторы и другие.
Используется данный материал для наружной или внутренней отделки различных зданий и помещений, а также в дорожном строительстве, ландшафтном дизайне и при изготовлении различных малых архитектурных форм. Благодаря возможности варьировать консистенцию материала во время его производства, полимерный бетон может быть использован как на горизонтальных, так и на вертикальных плоскостях.
Характеристики полимерного бетона
Основными компонентами для производства геополимерного бетона являются шлак, зола, жидкое стекло, связующие смолы. Во время полимеризации такого раствора образовывается монолит, который как по прочности, так и по большинству других технических характеристик, существенно превосходит обычный бетон. По сравнению с раствором, который готовится на основе портландцемента, он имеет несколько достоинств:
- повышенная адгезия фактически с любой поверхностью;
- высокая скорость затвердевания;
- отменные показатели по паропроницаемости;
- повышенные показатели по устойчивости к изгибу и растяжению;
- прочность и износостойкость;
- устойчивость к воздействию температурных перепадов и кислотных химических соединений.
Также данный стройматериал имеет небольшой вес, он полностью экологичен. Если же говорить о недостатках, то о н у данного материала всего один. Ввиду того, что разработан он был не так давно, а для его производства используются качественные составляющие, то стоит он достаточно дорого. Однако есть все основания полагать, что в очень скором будущем именно он станет наиболее популярным видом бетона, используемым в строительстве.
Особенности приготовления полимерного бетона
Помимо уже указанных компонентов, в качестве добавки для геополимерного бетона чаще всего используются клей ПВА, латексы и водорастворимые смолы. Если будет использоваться ПВА, то следует подбирать только такой вид, в котором в качестве эмульгатора используется поливиниловый спирт.
При высыхании такой смеси на поверхности образуется прочная пленка, которая со временем набухает и поглощает воду. Именно поэтому во время затвердевания материала не допускается то, чтобы он контактировал с воздухом с повышенной содержанием влаги.
Оптимальное количество различных добавок для такого материала чаще всего устанавливается опытным путем. Однако залогом обеспечения высокого качества раствора является правильное соотношение цемента и полимерных компонентов. Объем полимерных компонентов должен составлять не более 20% от общей массы цемента. А объем водорастворимых смол – не более 2% массы цемента. Самого высокого качества можно добиться при использовании полиамидных или эпоксидных смол, а также полиэтилен-полиаминовых отвердителей.
При приготовлении геополимерного бетона, как и обычного, Вам понадобится бетономешалка. В нее сначала засыпаются вода и цемент, специально предназначенный для полимерных бетонов (обычный портландцемент использовать нельзя, так как он не подходит по характеристикам). Затем в раствор добавляются шлак и зола в равных частях, после чего он тщательно перемешивается. Уже после этого добавляются полимерные компоненты и добавки.
chastnyi-dom.com
Бетон полимер цемент ный - Справочник химика 21
О свойствах бетонов, изготовляемых на основе композиций неорганических вяжущих веществ и органических высокомолекулярных связующих, см. Полимер-цемент. [c.440]Полимерцементы — искусственно приготовленные материалы, для которых в качестве вяжущего служит бетон или гипс с добавлением полимеров или водных суспензий натуральных или синтетических латексов. В качестве полимерного связующего чаще всего используются поливинилацетатная дисперсия, водорастворимые эпоксидные, полиэфирные, фенолоформальдегидные, фурановые или карбамидные полимеры, эфиры целлюлозы и др. Добавление полимеров к минеральным вяжущим повыщает их физические и физико-химические свойства. Так, вяжущие, затворенные суспензией латекса (латекс-цементы), обладают свойствами как цементов, так и полимеров. Эти свойства во многом зависят от выбора полимерных добавок и их количеств. [c.431]
Обычно полимеры добавляют в бетонную смесь в пропорции от 0,05 до 0,2 кг полимера на 1 кг цемента. Эта пропорция называется полимерцементным отношением. [c.315]Полимерцементные материалы относятся к композиционным вяжущим, получаемым на основе неорганической составляющей (портландцемент, глиноземистый цемент, гипс и др.) в сочетании с органическим компонентом [20]. В качестве органического компонента используются водорастворимые материалы (эпоксидные, карбамидные и фура-новые смолы, производные целлюлозы и др.) и водные дисперсии полимеров (поливинилацетат, латексы, эмульсии кремнийорганических полимеров). Применяются также мономерные и олигомерные соединения, которые полимеризуются при гидратации вяжущего материала под действием отвер-дителей и инициаторов, температуры, рН-среды и т. п. Полимерный компонент вводится либо в воду затворения, а затем используется при приготовлении растворной или бетонной смеси, либо вводится в виде порошкообразного компонента в состав сухой смеси на основе вяжущего вещества, а затем при затворении растворной или бетонной смеси водой диспергируется в водной среде, а при твердении растворов полимеризуется [10]. Свойства получаемых материалов зависят от многих факторов вида и качества цемента, вида полимера, полимерцемент-ного отношения (П/Ц), водоцементного отношения (В/Ц) и др. Полимерцементное отношение определяется как отношение массовой доли полимера (в расчете на сухое вещество) и цемента в композиционном вяжущем. Для полимерцементных материалов характерно отношение П/Ц > 0,2-0,4, когда полимерная фаза образует в цементном камне органическую структуру. При П/Ц = 0,2-0,25 кристаллизационно-коагуляционная структура цементного камня в местах дефектов (полы, трещины) укрепляется полимерной составляющей, что и обусловливает формирование более прочной и эластичной структуры. При П/Ц > 0,25 полимер образует непрерывную полимерную сетку. В полимерцементных композициях не наблюдается взаимодействие между органической и неорганической фазами [20]. Органические фазы взаимодействуют с гид-ратными фазами только за счет ионных и водородных связей и сил Ван-дер-Ваальса. В присутствии полимерных добавок изменяется кинетика гидратации портландцемента, причем с ростом П/Ц наблюдается замедление скорости взаимодействия цемента с водой. [c.295]
Как следует из табл. 11.4, импрегнирование бетонов полимерами значительно увеличивает их сопротивление воздействию дистиллированной воды, разбавленной соляной кислоты и сульфатов [219, 230, 231, 318, 614, 886, 887]. Необработанные бетоны весьма чувствительны к воздействию этих трех сред. Дистиллированная вода выщелачивает из цемента некоторые компоненты, соляная кислота реагирует с основными компонентами, а сульфатные ионы вступают в обменные реакции с карбонатами и изменяют кристалличность, вызывая тем самым растрескивание и в конечном счете разрушение образца. Полимер, по-видимому, служит в качестве внутреннего защитного покрытия, затрудняющего доступ агрессивных сред к цементу. Так, начало разрушения в разбавленной [c.300]
Постоянно разрабатываются и совершенствуются сорта легкого бетона из цемента и полимеров малой удельной массы (например, на основе пенополистирола). Они имеют отличную прочность, хорошие теплоизоляционные свойства, малое влаго-поглощение, и, кроме того, их легко обрабатывать различными способами. Легкие бетоны, также как и упоминавшиеся в другой статье стеклобетоны, все шире применяются в различных областях. Однако более интенсивное вытеснение этими материалами классического бетона в несущих конструкциях начнется, как считают специалисты, не раньше 1990 г. [c.255]
Карбамид используется для получения полимеров, лекарственных препаратов, гербицидов и других продуктов. В сельском хозяйстве его применяют в качестве богатого азотом удобрения. Вместе с фенолформальдегидными полимерами (резольного типа) он может входить в состав безусадочного цемента. В сочетании с кремнийорганическими соединениями карбамид входит в комплексную добавку для бетонной смеси с целью повышения ее удобоукладываемости и морозостойкости. [c.260]
Исследования, относящиеся к решению первой задачи физико-химической механики, открывают новые пути в технологии получения высококачественных материалов, цементов, бетонов, асфальтобетонов, керамики и металлокерамики, материалов на основе полимеров с активными заполнителями и др. [c.208]
Разработаны и изготовляются также бетоны, в которых в качестве вяжущего используются органические полимеры или полимеры совместно с цементом. Э-го так называемые п л а с т о-бетоны, обладающие особыми сво ствами. [c.149]
Исследования, относящиеся к решению первой задачи физикохимической механики, открывают новые пути в технологии получения высококачественных материалов цементов, бетонов, асфаль-то-бетонов, керамики и металлокерамики, материалов на основе полимеров с активными заполнителями и др. Эта задача научно обоснованного синтеза прочности или, вернее, носителя прочности, и определяет актуальность физико-химической механики, ее прикладное значение. Ученые физико-химики до последнего времени обычно относились к этой важной проблеме пренебрежительно, считая, что ее разработка является делом технологов и может проводиться эмпирически, без участия физико-химической науки. Со своей стороны, технологи, оторванные и от исследователей-механиков и от физико-химиков, успешно решали лишь отдельные узкие вопросы, обращаясь к физико-химикам только в связи с желанием использовать новые методы измерения. Таким образом, [c.13]
Дисперсионные силикатные краски такого типа являются красками нового поколения, отличающимися по составу и свойствам от известных силикатных красок (ГОСТ 18958—73). Краски представляют собой дисперсии полимеров, функциональных доба вок, наполнителей и пигментов щирокой цветовой гаммы в вод ных растворах жидких стекол. Краска наносится на минеральны поверхности (цемент, бетон, керамический или силикатный кирпич штукатурку и др.) обычными способами — кистью, валиком краскопультом. [c.196]
Цемент и бетон также содержат в своем составе неорганические силикатные полимеры. Обилие литературных данных по этим материалам позволяет нам подробно не останавливаться на результатах исследований. Для интересующихся укажем монографии Торопова [246] и Ершова [247], а также статьи Будникова [248] и др. [415], обобщающие этот материал. [c.349]
Полимер-цементный бетон обладает значительным разнообразием свойств, характерных как для цемента, так и для полимера. [c.364]
Физико-механические свойства полимер-цементного бетона определяются свойствами цемента и полимера, их соотношением, количеством и свойствами заполнителя, степенью сцепления его с минеральным вяжущим и полимерным связующим, условиями затвердевания и пр. [c.364]
С 50-х годов известно, что введение различных полимеров в составы, содержащие портланд-цемент, и в бетоны приводит к значительному улучшению многих их физических и химических свойств [21—23, 25, 46, 192, 229—231, 237, 318, 885—887, 969— 971]. Например, прочность при сжатии и при растяжении возрастает в 3—5 раз значительно увеличивается сопротивление раз-рушению ири циклическом замораживании и размораживании, стойкость к органическим кислотам, сульфатным ионам и воде [c.288]
В зависимости от способа введения полимера получаются материалы с различными свойствами. Отверждение цементов происходит в результате гидратации составляющих их компонентов присутствие дополнительной фазы может повлиять на процесс гидратации и привести к изменению свойств материала по сравнению со свойствами материалов, получаемых импрегнированием уже отвержденной цементной или бетонной матрицы. Так, полимеризация мономера в составе отвержденного бетона способствует увеличению модуля упругости, в том числе ири изгибе, в то время как полимерные латексы, введенные в исходные смеси, в некоторых случаях уменьшают модуль упругости. В целом материалы с лучшими свойствами получаются в результате импрегнирования мономерами отвержденных составов. [c.289]
Цементы и бетоны, импрегнированные полимерами [c.294]
Наличие полимера в бетонах приводит к увеличению термического коэффициента расширения. Например, при содержании 6% полиметилметакрилата или полистирола коэффициент термического расширения возрастает примерно на 25% [886]. Это связано с тем, что полимер обладает большим термическим коэффициентом расширения, чем цемент. Отмечено также небольшое (я 5%) возрастание коэффициента температуропроводности и небольшое уменьшение коэффициента теплопроводности [886]. [c.300]
Все большее внимание привлекают родственные рассмотренным ранее системы, содержащие полимеры, например цементы и строительные составы, наполненные полимерными волокнами [230, 281, 886], различные легкие бетоны [43], горные породы [953], пористая керамика [320, 321, 369, 370, 371], материалы, используемые при изготовлении скульптурных сооружений [317]. Привлекает внимание также использование полимеров в качестве связующего для горных пород [885]. [c.306]
Некоторые механические свойства поливиинлацетатного бетона при различном соотношении полимер-цемент и наличии песка нриведены в табл, 266. Для сравнения в таблице даны свойства мелкозернпстого бетона. В табл. 267 приведены свопства футеровочных коррозпоииостойких полимербетонов па различных смолах по данным Эванса [212]. [c.355]
Некоторые неорганические вещества имеют также полимерное строение, например аморфный 5102, природные и синтетические силикаты и алюмосиликаты общей формулы хЭгОз-уЗЮг-гНгО, где Э Na, А1, Mg и др. По типу полимеров построены и силикатные стекла, основной составной частью которых является 8102, а также цемент н бетон. [c.380]
В цементные растворы и бетоны добавляют также жидкие полимеры термореактивного типа — полиэфиры и эпоксиды, отверждаемые в процессе гидратации цемента. Преимущество таких добавок состоит в том, что они придают бетонам и растворам повышенную термическую стабильность, а наличие пространственной сетки в ре-актопласте увеличивает сопротивляемость бетонов к воздействию агрессивных растворов. [c.315]
Сознательный, т. е. научно обоснованный синтез прочности или, вернее, носителя прочности реального твердого тела — проблема новых рациональных строительных и конструкционных материалов в современной технике. Она прежде всего и определяет актуальность физико-химической механики, ее выдающееся прикладное значение. Ученые физнко-химнки до последнего времени обычно относились к этой важной проблеме пренебрежительно, считая, что ее разработка — дело технологов и может проводиться эмпирически, без участия физико-химической науки. Со своей стороны, технологи, оторванные от исследователей — механиков и физико-химиков, успешно решали лишь отдельные узкие вопросы, обращаясь к физико-химии только для того, чтобы использовать новые методы измерения. Таким образом, основные задачи не были даже правильно поставлены, не было физико-химических представлений о существе процессов деформирования и разрушения, с одной стороны, и структурообразования — с другой. Даже не выдвигалась проблема установления общих закономерностей в этой важнейшей области науки и практики. Отсутствие современных физико-химических представлений о существе и механизме процессов приводило к техническому формализму в его худшем виде творческое научное исследование подменялось эмпирическими рецептурными сведениями на основе давно устаревших взглядов. Если в области металлов и новых сплавов, а также полимеров и пластиков здесь уже довольно много сделано, то основные проблемы неметалличргких мятрриялов на основе ионных кристаллов (цементы и бетоны, керамика) до последнего времени оставались нерешенными. [c.209]
Установление количеств, зависимости св-в кристаллич. в-в от их структуры пока оказывается возможным лишь в редких случаях (напр., расчет энтальпий сублимации орг. соединений). В настоящее время возможны гл. обр. качественные оценки, к-рые тем не менее имеют существ, практич. значение, напр., при изучении влияния малых добавок на синтез и св-ва монокристаллов (лазерных, люминесцентных, полупроводниковых и др. материалов), в вопросах физики и хи-Мин металлов и сплавов, полупроводников и др. Активно изучается влияние кристаллич. структуры на хим. р-ции в твердом теле. Кристаллохим. подход используется в техн. материаловедении (неорг. материалы, металлы, сплавы, цементы, бетоны, композиты, полимеры и др.). Изучение строения комплексов белок - субстрат, структуры нуклеиновых к-т в кристаллич. состоянии позволило модифицировать хим. состав белков с целью улучшения их бнол. ф-ций, что важно для биохимии, медицины и биотехнологии. [c.536]
Свойства полимерцементных композиций и бетонов на их основе зависят от количества и природы полимера, условий затвердевания. Полимерные добавки значительно повьппают прочность минеральных вяжущих веществ. Так, в случае ПВА прочность полимерцемента при растяжении и изгибе в 2—2,5 раза выше, чем у обычного цемента. Если полимер недостаточно водостоек, то при увлажнении прочность полимерцемента снижается. Очень важна высокая адгезия полимерцемента практически ко всем применяемым в строительстве материалам. При содержании полимера 20—25 % клеящая способность полимерцемента приближается к клеящей способности чистого полимера. [c.103]
В строительной практике применяют составы, к-рые поставляются в двух упаковках. В одной из них содержится стабилизированная дисперсия полимера, в другой — сухая минеральная часть, к-рую получают предварительным перемепи1ванием цемента с ппгмеп-том в вибромельнице и последующим смеякшием окрашенного цемента с наполнителями в обычном смесителе, Бетонный состав приготовляют непосредственно на строительстве. Напр., состав б е т о л и т получают, смешивая компоненты в след, соотношениях (по массе) минеральная часть — 5,0 50%-пая дисперсия — 0,4 вода — 0,4. Покрытия, к-рыо образуются в результате затвердевания этого состава, характеризуются след, механич. свойствами прочность при сжатии 25—40 Мн/.ч (250—400 кгс/с.ч-), ирочность нри изгибе 10 — 13 Мн/.ч (100—130 кгс/см-). Прочность покрытия возрастает во времени через 3. мес после нанесения состава она примерно на 10% иревышает прочность обычного бетона. [c.344]
Известно применение герметизирующих материалов на основе поливинилхлорида, полиэфирных смол, полиуретанов, полистиролов. Назначение и стоимость их приведены в табл. 55.7—55.10. Составы на основе поливинилового спирта, включая поливинилацетатные дисперсии (ПВАД) и их смеси с эластичными полимерами (ПВАЭД), рекомендуют в качестве клеев, связующих ЛКП, пластмасс, цементов, бетонов (табл. 55.11). Возможно применение жидких углеводородных каучуков, составы которых продолжают совершенствоваться [21. [c.644]
П. получают, смешивая цемент и наполнитель с водной дисперсией полимера в обычных или вибросмеси-телях (см. Смесители). Иногда П. приготовляют смешением цемента, воды и мономера (напр., метилметакрилата, акриловой к-ты). Режим твердения П. определяется видом материала или изделия. Так, бетоны в течение первых 3—5 сут выдерживают во влажной среде (поливают водой или хранят под слоем влажных опилок), а затем 14—42 сут при нормальных условиях. Отделочные составы твердеют на воздухе при обычных темп-рах в течение 1—2 сут, при использовании сушки ИК-лучами — в течение 10—30 мин. В отдельных случаях допустимо твердение П. при 80 °С и относительной влажности воздуха 100% продолжительность процесса 10— 15 ч. [c.452]
Некоторые механические свойства поливинилацетатцементного бетона при различном полимер-цементном соотношении и наличии песка в цементе представлены в табл. 215. Для сравнения в таблице приведены свойства мелкозернистого бетона. [c.364]
Как и в случае древесины, импрегнирование обычно включает сушку образца (вакуумирование матричного цемента или бетона) заполнение пор мономером (обычно под давлением) и полимери зацию — термическую или радиационную (доза ж 6 Мрад) [886] При радиационной полимеризации обычно получают образцы ( более высокой прочностью, чем при термической (в случае сти рола прочность выше примерно на 35%). Это, возможно, объяс няется тем, что при радиационной полимеризации происходит при вивка полимера к субстрату. Действительно, в результате облу чения в неорганической фазе могут возникать активные центры которые либо инициируют полимеризацию, либо увеличивают ад гезию. Кроме того, благодаря более низкой температуре при ра диационном инициировании потери мономера за счет испарения меньше. [c.294]
Манинг и Хоуп [569] считают, что упрочнение бетонов путем импрегнирования полимерами связано со способностью полимера образовывать непрерывную, беспорядочно ориентированную, усиливающую сетку увеличивать прочность связи между наполнителем и цементной пастой заращивать микротрещииы в цементной пасте поглощать энергию деформации композиции проникать в микропоры в цементной пасте и упрочнять их связываться с гидратированным или негидратированным цементом. Эти механизмы не являются, разумеется, взаимно исключающими. Однако удовлетворительная количественная теория упрочнения бетонов (или других пористых систем) путем импрегнирования полимерами еще не создана. [c.306]
chem21.info
ПОЛИМЕРЫ И ЦЕМЕНТЫ -
Современное рассмотрение взаимодействия минерального вяжущего вещества и органической (как полимерной, так и молекулярной) добавки должно исходить из того, что такая добавка, во-первых, проявляет поверхностно-активные (в Гиббсовском смысле этого термина) свойства, которые следует характеризовать величиной поверхностного натяжения. Во-вторых, о,на должна характеризоваться величиной молекулярного веса цепи. Существенны также вид, количество (в том числе количество на элементарное звено макроцепи) и взаимное расположение функциональных групп.
Рассматривая гидратационное твердение цементов в присутствии органических соединений с различными функциональными группами, целесообразно, канат взгляд8, исходить из того, что пси взаимодействии мономерных соединений клинкера-ортосиликата и оксиортосиликата кальция с водой затворения происходят реакции поликонденсации и параллельно—реакция ионного обмена или солеобразоваияя, приводящие к образованию полимерных гидросилнкатов кальция портлаидцементного камня (наряду с мономерными).
Поведение алюминат,ной составляющей может заключаться в образован гексагидроксоалюмиатиона и полиалимооксаната кальция. Кроме того, благодаря амфотерности алюминия при образуются коордннационные сведияения, где атом алюминия входит з комплексный катион.
Подходя с таких позиций к гидратации цементов в присутствии высоко и низкомолекулярных органических соединений с разными функциональными группами и на основании выполненного накк комплексного физико-химического исследования (Ю. С. Черкинский, Г. Ф. Слипчеико. Гидратационное твердение цемента в присутствии полимеров), подтвержденного другими работами, МОЖ1НО утверждать следующее.
Органические соединения, содержащие функциональные группы кислотного характера, содействуют образованию соединений алюминия, где атом алюминия входит в комплексный катион (кристаллизующийся в гексагенальной форме СзАНе СгАНз и САН-А Органические основания способствуют образованию координационных соединений алюминия, где атом алюминия входит в состав комплексного аннона, например кубического СзАН6.
Влияние органических соединений в состав гидросиликатов кальция, образующихся в системе 3CaO-SiO-2 — воды, прослеживается слабее, но в общем гиде можно считать, что кислоты связывают кальций и увеличивают содержание полимерных гидрос-иликатов кальция. Органические основания способствуют образованию силикатов кальция.
Роль органических кислот, а также миртов, гликолем и кислот, содержащих группы, и химичеких процессах определяется величиной IX константы диссоциации. Участие галогенной и аминогруппы в химических превращениях гидратирующихся клинкерных минералов не установлено. Двойная связь непредельного соединения окапывает гидрофобизирующее действие; органическое соединение, содержащее несколько функциональных груши, влияет на гидратацию, если к этой группе находится другая полярная.
Прочность и модуль упругости полимерщемента определяются в значительной мере условиями и продолжительностью твердения, а также типом полимера. В работе Р. К. де Викея и А. Дж. Мал ж ум да.р а сопоставлены водный и воздушно-сухой режимы твердения, выявлены добавки к полимерцементу водного твердения, что связывает эти исследования с нашими работами по полимерцементам гидротермального твердения. Но в них не отмечена роль стабилизатора. Между тем она весьма существенна. Достижение агрегативной устойчивости системы цемент—йодная дисперсия полимера является важнейшим элементом химической технологии таких и полимерцементов.
В процессе твердения образуется структура полимерцемента, и которой цементный камень достаточно равномерно чередуется с полимером, а соотношение этих фаз определяется количеством полимерией добавки. Нами на модельной полимергипсовой твердеющей системе экспериментально доказано, что фаза этической полимерной добавки пронизана тонккодиспергированными новообразованиями (ом. рисунок). Они как бы модифицируют, существенно меняют свойства этой полимерной добавки.
Известно, что полимерная добавка цементный камень, причем это происходит и при использовании полимеров весьма слабо связанных адгезионно. Как это объяснить с точки зрения представлений о структуре цементного камня?
ежики, причем срастание кристаллов и образование дегидритов в обычных условиях твердения наименее вероятно. Ежики наблюдались и другими учеными непосредственно в цементном камне. Если считать, что прочность цементного камня определяется структурой, образуемой преимущественно путем взаимного проникновения -и защемления иголок, ясно, что даже слабое склеивание иголок полимером ведет к значительному упрочнению структуры.
Полимерная добавка преимущественно увеличивает предел прочности при изгибе (в 2—3 раза) и меньше при сжатии (колебания от контрольного, без полимера, составляют ±00—30%). Модуль упругости при введении полимера может уменьшаться в два и более раза. Это относительные показатели, полученные из опыта. Рассчитывать прочность полимерцементов рекомендуется исходя из пористости.
Ряд интересных свойств полимерцементов обусловили их возрастающее применение в отделочных и изоляционных материалах. Отметим клеящею способность (20—80 к.гс/см2 на сдвиг), болег высокую, чем у цемента и полимера отдельности. Этим частнын примером иллюстрируется та специфичность свойств полимер-елементов, которая определяется сингулярным эффектом взаимодействия цемента с полимером, приводящим к получению принципиально нового материала — полимер,цемента.
Действительно, сегодня неразрывная связь этих направлений прослеживаете0 все более четко. Происходит, пусть с некоторым опозданием, существенное развитие и взаимное проникновение плодотворных идей полимерии. Ведь начале разговора о полимерных представлениях в химии цементов, о неорганических полимерных строительных материалах было положено более 10 лет назад8.
Применительно к цементам оказалось возможным показать, что сырье для него и продукты его гидратации имеют полимерную (неорганическую полимерную природу, а синтез цемента преследует цель получить промежуточный продукт— клинкер, путем разумной заметы преимущественно ковалентных связей, реакционными с водой, ионными. В цементном же бетоне необходимо иметь возможно больше в количественном и пространственном отношениях связей козилентной природы, возможно больше полимерных соединений. Нужнь полимер органической и неорганической природы. Интересные результаты можно получить (Н А. Соколова, В. П. Лютый
alyos.ru
Полимерный бетон своими руками: наполнители и водорастворимые смолы
Бетонные смеси сегодня применяются на любой строительной площадке. Существует большое количество их разновидностей.
Если полимерный бетон нанести слоем 2 см, то через пару часов после сушки можно нанести на поверхности рисунки.
Сравнительно недавно появилась смесь, которая названа полимерным бетоном.
Его разновидность — геополимерный бетон. Что представляет собой полимерный бетон?
Характерное отличие этой бетонной смеси от других составов — добавление в нее в процессе изготовления органических высокомолекулярных соединений. Вяжущим веществом в такой смеси являются различные полиэфирные смолы: полиуретановая, метилметакрилатная, эпоксидная, поливиниловая и некоторые другие. В них добавляется отвердитель, различные катализаторы, растворители и другие компоненты.
Преимущества полимерного бетона
Геополимерный бетон имеет целый ряд преимуществ:
Схема укладки полов из полимерного бетона.
- обладает высокой степенью сцепления с поверхностями любой фактуры и материала;
- быстро затвердевает;
- обладает большой проницаемостью;
- имеет высокую степень сопротивления растяжению и изгибу;
- отличается повышенной прочностью и износостойкостью;
- устойчивость к перепадам температур и к воздействию кислот;
- обладает экологической чистотой и малым удельным весом.
Недостаток этого материала — дороговизна.
Вернуться к оглавлению
Приготовление полимерного бетона
На сегодняшний день геополимерный бетон претерпевает стадию разработки, поэтому точной его рецептуры нет. Но приготовить бетон своими руками — вполне выполнимая задача. Для этого придется немного поэкспериментировать.
В качестве различных добавок при замешивании используются ПВА, различные латексы и водорастворимые смолы. При высыхании полимерного бетона на его поверхности образуется твердая пленка. Она способна поглощать воду и разбухать, поэтому следует избегать повышенной влажности при изготовлении и использовании рабочей смеси. Влажность сыпучих компонентов не должна превышать 1%. Для достижения этого наполнители просушиваются в сушилках барабанного типа. Температуры сушки — 80-110°С. Перед замешиванием раствора их остужают до температуры окружающего воздуха.
Схема монтажа пола из полимерного бетона.
Синтетические смолы, отвердители перед замешиванием подогревают до достижения температуры их плавления — 35-40°С. Оптимальное количество различных добавок для полимерной бетонной смеси устанавливается экспериментальным путем. Главное в этом процессе — помнить, что доля полимеров должна составлять около 20% от массы цемента.
Водорастворимые смолы при замешивании раствора вводятся небольшими дозами, не превышающими 2% от массы цемента. Смесь постоянно перемешивается. Лучше это делать с применением бетономешалки. Практика показывает, что наиболее качественный полимерный бетон получается при добавлении полиамидной и эпоксидной смол, и полиэтилен-полиаминового отвердителя.
Вернуться к оглавлению
Способы применения полимерного бетона
Такой материал может применяться для напыления и штамповки на горизонтальных и вертикальных поверхностях. Делается это в такой последовательности:
- Замешивается рабочий раствор.
- При необходимости добавляется синтетический краситель.
- Все перемешать до консистенции жидкой сметаны.
- Смесь напыляется на поверхность с помощью штукатурного пистолета с расстояния 0,5-1 м.
- Металлическую поверхность перед напылением нужно обезжирить.
- Полимерный бетон при напылении наносится двумя слоями — базовым и финишным.
После напыления его на фанеру и другие пластичные материалы их можно гнуть и покрытие при этом не потрескается. Наносится полимербетон и на утеплитель. Он пригоден для обработки фасадов. Этот материал не дает потеков. Даже при помощи обычного малярного скотча легко можно создать простейший рисунок. Нужно полоски скотча произвольно наклеить на поверхность и покрыть ее тонким слоем раствора. После неполного высыхания бетонного покрытия липкая лента отрывается, рисунок остается.
Полимерный бетон, если его нанести слоем толщиной около 2 см, через пару часов можно проштамповать для получения рисунка. Делается это полиуретановыми штампами разной текстуры. С их помощью можно придать поверхности вид кирпичной кладки, а также оставить самые разнообразные орнаменты. Чаще всего штампованный полимерный бетон окрашивают. Это можно делать специальными морилками или красками для бетона на акриловой основе.
Материал используется для сооружения дорожек и террас, для отделки стен изнутри и снаружи здания, для заливки полов. Полимерным бетоном отделывают порталы каминов, лестницы, заборы, бассейны, бордюры дорожек. Из него можно отливать скульптуры для парков и садов. Почти все вольеры и скалы в Московском зоопарке выполнены из полимерного бетона.
moidomkarkas.ru
характеристики, состав и технология приготовления
За редким исключением технология проведения строительных, реставрационных или ремонтных работ предусматривает использование бетонных растворов. Все эти материалы отличаются маркой, классом и некоторыми другими параметрами, например, влагостойкостью. И все имеют общее сходство – в качестве единственного вяжущего компонента в этих смесях используется цемент. Но современная промышленность наладила выпуск и других аналогичных стройматериалов, один из которых – полимерный бетон.
Его принципиальное отличие в том, что в привычную песчано-цементную смесь в качестве вяжущего средства добавляют специальные ингредиенты – смолы. Их постепенно вводят во время приготовления раствора. Бетоны на основе полимеров подходят для отделки поверхностей как внутри, так и снаружи зданий, заливки полов, ступеней лестниц.
Состав и наполнители
Для приготовления данных бетонов также используются наполнители и вяжущие средства. Учитывая особые качества полимеров, соотношение между компонентами может варьироваться в пределах от 5:1 до 12:1.
Как и у традиционных аналогов, в составе бетона полимерного присутствуют фракции разных размеров, причем в отличие от цементных марок, и тонкодисперсные. Учитывая, что данные материалы широко используются, в том числе, и для эксплуатации в условиях непосредственного контакта с агрессивными соединениями, в качестве наполнителей применяются вещества с повышенной стойкостью к химическим воздействиям (например, кварцит, базальт, туф).
Вяжущие компоненты:
- Наиболее дешевые – полимеры фурановые. Но и прочность, соответственно, невысокая.
- Более качественные бетоны, в состав которых входят полиэфиры (ненасыщенные).
- Самыми лучшими вариантами считаются материалы, содержащие смолы эпоксидные. Они сочетают в себе прочность, пластичность, износостойкость. Однако и цена их достаточно высокая.
Изготовление
На вопрос о том, как сделать бетон полимерный, однозначного ответа пока нет. Во всех источниках говорится об экспериментальном пути получения необходимого состава. Нужно добиться, чтобы при высыхании нанесенной смеси она образовывала эластичное упругое покрытие. Многое зависит и от места укладки, от того, какого результата необходимо добиться. Есть общая рекомендация, что от общей массы раствора полимерные добавки должны составлять примерно 1/5 часть.
Многое зависит и от того, какой класс бетона нужно получить. Поэтому придется варьировать процентным соотношением смол, отвердителей. Нужно учитывать и вид полимерного вяжущего, который решено использовать, так как у каждого свои специфические свойства. Отдельные источники указывают, что применение эпоксидных смол предполагает замену цемента на шлаки, золу и жидкое стекло. Во всем остальном (перемешивание) методика прежняя.
Отличительные особенности полимербетонов
- Высокая водонепроницаемость. Позволяет значительно упростить технологию производства работ на участках, где элементы конструкции сооружения подвергаются интенсивному воздействию жидкостей. Купив полимерный, или природный бетон, можно существенно сэкономить на гидроизоляции и сократить общее время работ.
- Устойчивость к агрессивным средам, низким температурам.
- Показатели механической прочности существенно превышают аналогичные характеристики бетонов на основе цементов: на изгиб – до 10, на сжатие – до 3 раз.
- Небольшой удельный вес, что значительно увеличивает спектр применения.
- Свойство эластичности позволяет использовать его на участках, подверженных динамическим нагрузкам. Может наноситься на плоскости с любой ориентацией: горизонтальной, вертикальной, наклонной.
- Отличная адгезия, причем независимо от материала основы.
- Сроки отвердевания меньше, чем у цементных.
- Возможность достижения идеальной ровности покрытия. Поверхности, отделанные полимерными бетонами, просты в уходе.
stoneguru.ru
Добавки в цемент: особенности применения
Для того, чтобы повысить качественные характеристики цементного раствора, к нему добавляют специальные вещества. Различают несколько видов добавок для цемента, которые придают ему те или иные свойства. Об особенностях и разновидностях добавок для цемента, рассмотрим далее.
Оглавление:
- Добавки в цемент: разновидности и особенности цемента
- Добавки для цемента и бетона - принцип действия
- Водонепроницаемые и полимерные добавки в цемент
- Особенности противоморозных добавок в цемент
- Модифицирующие добавки для цемента: характеристика
- Разновидности добавок для цемента
Добавки в цемент: разновидности и особенности цемента
Цемент появился не так уж давно, но сумел завоевать популярность очень быстро. Для его получения соединили между собой глину и известь и обожгли их специальным способом. Цемент является основным составляющим большинства из строительных составов. Кроме того, на его основе изготавливают полимерцементные составы.
В составе цемента присутствуют также вещества на основе алюминатов и силикатов, для формирования которых используется сырье, подвергаемое высокой температуре. При этом, после застывания, цемент становится довольно твердым и прочным.
Различают несколько вариантов цемента, в соотношении с их составом. У каждого из них присутствует определенная характеристика твердости, от которой зависит марка и качество продукта. Различают несколько вариантов цемента, самые распространенные марки от двести до шестьсот. При этом, выбор того или иного типа цемента напрямую определяется сферой его применения. Предлагаем ознакомиться с основными видами цемента:
1. Использование портландцемента довольно распространено. Данный материал еще называется силикатным. Он имеет вид гидравлического связующего вещества, которое твердеет как в обычной среде, при контакте с воздухом, так и растворяясь в воде. По внешнему виду, данный материал является серо-зеленым порошком, который нуждается в добавлении воды для его замешивания. При схватывании цементного состава, происходит постепенное его затвердение. Портландцемент является основным составляющим почти для каждого из видов цементных составов.
2. Применения пластифицированного варианта цемента отличается большим количеством преимуществ. Данный материал позволяет снизить уровень затрат на приготовление раствора, цементная смесь становится не подверженной морозу, влаге, испарению и другим отрицательным факторам внешней среды.
3. Существует еще одна разновидность цемента, который называется шлаковым. Для его изготовления измельчается клинкер и доменный шлак. В полученную смесь добавляют определенные вещества, в виде гипса или извести. Данный раствор применяется в процессе смешивания строительных составов.
4. Материал в виде глиноземистого высокоактивного цемента отличается уникальностью. Время его схватывания составляет не более сорока пяти минут, а для того, чтобы состав набрал прочность, достаточно десяти часов. Главным преимуществом данного состава выступает способность быстро схватываться, несмотря на высокую влажность окружающей среды. Если добавить данный вариант цемента в бетон, у него появляется дополнительная стойкость перед влагой, коррозией, резкой сменой температурного режима.
5. Если соединить между собой кремнефтористый натрий и кварцевый песок, то получится цемент кислоупорного типа. Для растворения данного состава не используется простая вода. Для этих целей, следует применить жидкое стекло на основе натрия. Среди положительных характеристик данного цемента отметим высокий уровень его стойкости перед минеральными и органическими кислотами. Однако, в процессе эксплуатации данного раствора в едких или влажных условиях, длительность его использования значительно снижается.
6. Для изготовления цветного цемента используют обычный портландцемент, к которому добавляют разного рода пигменты. Данный вид цемента широко распространен в декорировании фасадов. Также, он является основой для изготовления дорог на основе бетона.
Портландцемент, смешиваясь с водой, образует пластичное вещество, которое после высыхания приобретает каменнообразную форму. Широкое использование данного вещества объясняется такими его преимуществами:
- способность отвердевать без постороннего вмешательства;
- образование каменного изделия, которое характеризуется высокой прочностью и твердостью;
- минимальный уровень химической опасности;
- экологическая безопасность;
- пожарная безопасность;
- доступная стоимость;
- широкая сфера применения - универсальность.
Самостоятельное применение портландцемента - редкость, так как чаще всего он является составляющей разного рода композитов, таких как сухие смеси, строительные бетоны и растворы. Для определения портландцементом смеси, следует сопоставить его с тремя критериями:
- качество исходных порошкообразных смесей;
- цементное тесто и его характеристика;
- полученный цементный камень.
Добавки для цемента и бетона - принцип действия
В составе портландцемента присутствуют вещества в виде клинкера. Для получения данного продукта сырье с алюминатами кальция и силикатами, поддают обжигу. Для того, чтобы изготовить портландцемент используется глина, мергель и известь. Вступая в реакцию с водой, цемент поддается кристалогидрированию. После этого, образуется вещество в виде бетонного камня, у которого имеются особые качества.
В соотношении с ГОСТом выделяют такие виды добавок в цемент:
1. В соотношении с основным действием они бывают:
- вещественными компонентами;
- регуляторами;
- элементами, которые упрощают процесс помола цемента.
2. Вещественные элементы, в свою очередь бывают:
- активными минералами;
- наполнительными составляющими.
3. Минеральные добавки в цемент активного действия бывают:
- гидравлического действия;
- пуццоланического действия.
4. Регулирующие добавки бывают:
- определяющие время схватывания раствора;
- отвердители;
- повышающие прочностные характеристики;
- пластифицированные вещества.
С помощью определенного рода добавок для цемента и бетона, удается выполнить такие функции:
- снизить выделение влаги с бетонного раствора, то есть повысить его пластичность;
- сделать цементный раствор более стойким к влаге;
- повысить или снизить уровень усадки цемента;
- отрегулировать выделение тепла;
- улучшить декоративные качества цементного раствора;
- отрегулировать цементное тесто по плотности;
- сделать состав цементного раствора более пластичным.
Водонепроницаемые и полимерные добавки в цемент
Полимерные добавки выступают в роли поверхностно-активных веществ. С их помощью удается повысить качество бетонного состава. С помощью определенных составов удается улучить пластичность бетона, снизить его влагопоглощение, отрегулировать выделение влаги. Таким образом, прочностные характеристики бетона значительно улучшаются. В некоторых случаях, с помощью добавок образуются материалы, внутри которых находится воздух.
Существует возможность перехода полимерных добавок в состояние тягучести. С их помощью удается кольматировать бетонные поры, повысить сцепление бетонного раствора с заполнителями и арматурой.
Добавки для цемента помогают сделать его влагонепроницаемым, морозостойким, прочным к растяжению, газонепроницаемым. Еще одну разновидность добавок составляют вещества кремние органического происхождения. Они выделяют газы внутри бетонного раствора. Поэтому, с их помощью в раствор вовлекается воздух. Он становится более пористым и стойким к морозу и влаге.
Некоторые разновидности добавок обладают гидрофобным эффектом. Принцип их действия основывается на кольматации капиллярных сплетений внутри бетона. Таким образом, осуществляется миграция влаги. С помощью влагонепроницаемых добавок удается улучшить структуру и повысить плотность бетонного состава.
Особенности противоморозных добавок в цемент
Отрицательный температурный режим плохо сказывается на эксплуатационных характеристиках бетонного раствора. Это объясняется тем, что при низкой температуре, вода, находящаяся внутри раствора, начинает замерзать. Во время потепления, она тает и расширяется, ухудшая качество бетона. Эффективность сопротивляться увеличенной в объеме влаге, называют морозостойкостью бетона.
Стойкость бетонного раствора к морозу определяет содержание в нем влаги. Для обеспечения данной характеристики, следует использовать специальные добавки, чаще всего это вещества с поверхностно-активными веществами.
Пластификаторы положительно сказываются на создании оптимальной структуры бетона. Структура раствора отличается более высоки уровнем плотности, которая делает цементное тесто седиментивным. Некоторые из добавок призваны сделать раствор более вохдуонасыщенным, таким образом, вода, после расширения, заполняет поры и никак не сказывается на качестве бетона.
Учтите, что для того, чтобы добиться положительного эффекта от введения присадки, следует выбирать только качественные материалы от проверенных производителей. Кроме того, перед применением добавок, следует ознакомиться с инструкцией от производителя и строго соблюдать все пропорции, рекомендуемые для того или иного вида добавки.
При добавлении небольшого количества добавки, бетон все равно будет подвержен морозу. Если количества пластификатора будет чересчур много, то конструкция потеряет прочность.
Модифицирующие добавки для цемента: характеристика
Данные составы вводятся в цементные смеси для улучшения их эластичности, стойкости перед трещинами, деформации. Кроме того, с их помощью удается повысить адгезию бетона к арматуре и любому невпитывающему основанию.
С помощью введения данного рода добавок удается повысить их сцепление с плиткой. Чаще всего данные добавки имеют жидкую форму. Они делают цементные материалы более эластичными, снижают уровень их усадки, используются как внутри, так и снаружи помещения, при этом, отличаются полной экологической безопасностью.
Цемент без добавок, хотя и имеет собственные эксплуатационные характеристики, однако, используется редко, из-за его подверженности разного рода внешним раздражителям.
Еще одним вариантом добавки для цемента является вещество с антикоррозийным действием. С помощью этих веществ удается связать свободный гидроксид кальция в бетонном составе. Кроме того, некоторые из добавок улучшают плотность бетона, делая его не только не подверженным коррозии, но и влагонепроницаемым.
Добавка гипса в цемент повышает время его застывания. Кроме того, с его помощью удается повысить качество готового раствора, а именно его прочностные характеристики, морозостойкие качества и стойкость к сульфидам.
Для изготовления цементов с активными минеральными добавками, используется измельченный клинкер. Добавки являются гранулированными шлаками или активными веществами, которые имеют осадочное происхождение. Бетон, к которому добавили эти вещества, отличается высоким уровнем влагостойкости, отличным выделением тепла и морозостойкостью.
Разновидности добавок для цемента
1. Для сухой смеси или бетона со специальными характеристиками используется пластификатор. С его помощью снижаются расходы цемента и воды, во время приготовления бетонного раствора. Пластификаторы делают раствор более пластичным и подвижным. Таким образом, с его помощью удается заполнить все поры.
2. Добавки водоудерживающего характера представлены в виде крахмала или целлюлозы. С их помощью удается добиться однородной консистенции бетона. Кроме того, они помогают избавиться от расслаивания бетона и от такого эффекта, как цементное молочко. Однако, негативной стороной использования данных добавок является снижение прочности основания и уменьшение его подвижности.
3. Применение редиспергируемых порошков является отличным связующим в процессе применения цемента для окрашивания поверхности. Кроме того, данные вещества являются основой для цементного клея, так как они придают составу высокую адгезию.
4. Вторым или третьим заполнителем является фиброволокно полимерного типа. Он делает основание стойким перед трещинами, кроме того, полученный состав отличается высокой подвижностью и самовыравниванием.
Для повышения водонепроницаемости используют вещества в виде гидрофизаторов. С помощью ускорителей или замедлителей отвердения удается регулировать данный процесс. Комбинация нескольких добавок помогает придать цементу необходимые для данного типа условий характеристики.
strport.ru