Огнезащита железо-бетонных конструкций. Огнезащита железобетонных конструкций
Огнезащита железобетонных конструкций - надежный способ противостоять пожару
data-ad-client="ca-pub-5367705517370237"data-ad-slot="4667332581"data-ad-format="auto">
Приветствую вас, дорогие читатели, с вами автор этого блога Владимир Раичев. Огонь, несомненно, является надежным помощником человека — он дает тепло, свет и даже защиту. Но когда он вырывается из-под контроля, бороться с этой стихией очень сложно. Именно поэтому заблаговременная огнезащита железобетонных конструкций очень важна для обеспечения безопасности людей.
Довольно часто в угоду экономии люди забывают о собственной безопасности, но такая бережливость может привести к печальным последствиям. Казалось бы, что может быть прочнее железобетонных конструкций? Оказывается и они не способны противостоять пожару. Точнее, они не способны противостоять тепловому воздействию длительное время.
Тем не менее, это не значит, что мы с вами совсем беззащитны против всепожирающей стихии. В современном мире есть различные технологии для противопожарной защиты дерева, металлоконструкций, тканей. Существуют точно такие же материалы и для защиты железобетонных конструкций.
Какими бывают огнезащитные покрытия для железобетонных конструкций
Специальные покрытия спасают здание в случае пожара, задерживая критический перегрев железобетона на несколько десятков минут. Предотвращаются деформация и разрушение конструкций до начала активного пожаротушения.
Защитное покрытие выпускается в виде краски, штукатурки со специальными свойствами и теплоизоляционных плит. Выгода огнезащитных покрытий заключается в следующем:
- Спасают здание от разрушения при пожаре;
- В нормальных условиях – это стеновые покрытия;
- Простота использования;
- Доступная цена.
Архитекторы включают защитные покрытия в проекты новых домов. Огнезащита железобетонных конструкций стала обязательной в новостройках Москвы и Санкт-Петербурга. В старых зданиях такая защита не предусмотрена. Владельцам нужно самим заботиться о безопасности и совмещать ремонт с противопожарными мероприятиями.
data-ad-layout="in-article"data-ad-format="fluid"data-ad-client="ca-pub-5367705517370237"data-ad-slot="6305693799">Противопожарная защита железобетонных конструкций при помощи штукатурки
Защитная штукатурка задерживает опасное разогревание железобетона. У нее малая теплопроводность; при пожаре компоненты штукатурки химически разрушаются с поглощением теплоты (охлаждающий эффект). В нормальных условиях штукатурка выполняет полезную функцию стенового покрытия с теплоизолирующими свойствами.
Примеры огнезащитных штукатурок:
- Нертекс-У
- Огракс-НШ
- Айсберг
Обработка железобетонных конструкций огнезащитной краской
Нанесение огнезащитной краски – это гарантия того, что в случае пожара задержится разрушение железобетона. Защита основана на вспучивании краски под действием огня, образования пористого слоя с малой теплопроводностью.
Краска наносится в несколько слоев, от толщины покрытия зависит время защиты от перегрева. Цена за квадратный метр покрытия зависит от расхода краски, но в любом случае это экономный способ повышения огнестойкости здания.
Краски водно-дисперсионные, на водной основе выполняют еще и обычную декоративную функцию. Основной цвет – белый или светло-серый, возможна колеровка.
Вот такие нехитрые способы помогут защитить здания от разрушения при пожаре. А на сегодня у меня все, подписывайтесь на обновления блога, поделитесь этой статьей с друзьями в социальных сетях. До новых встреч, пока-пока.
data-ad-layout="in-article"data-ad-format="fluid"data-ad-client="ca-pub-5367705517370237"data-ad-slot="6305693799">raichev.ru
Огнезащита железобетона - Компания КРОЗ
Огнезащита железобетонных конструкций
Строительство при помощи железобетонных конструкций по-прежнему в нашей стране является наиболее популярным.
Для огнезащиты бетона и железобетона целесообразно применение материалов с высокой теплоизолирующей способностью и высокой паропроницаемостью для того, чтобы обеспечить медленный прогрев защищаемой конструкции, при котором диффузия паров воды, продуктов термической деструкции материала не вызывала бы значительных внутренних напряжений. Этим критериям отвечают огнезащитные штукатурки на минеральном вяжущем с легкими заполнителями: вспученными перлитом и вермикулитом или гранулами из минеральных волокон. |
|
Штукатурки на основе легких наполнителей при небольших объемах работ могут наноситься с применением ручного штукатурного инструмента, однако наиболее технологичным процессом является оштукатуривание защищаемых конструкций методом мокрого торкретирования. Торкретирование позволяет создавать огнезащитные покрытия, точно повторяющие форму защищаемой строительной конструкции.Качество выполнения работы по нанесению огнезащитных штукатурок агрегатами циклического действия выше, чем при использовании агрегатов непрерывного действия ввиду того, что затворение и вымешивание раствора происходит в растворосмесителе более длительное время (не менее 15 минут), за это время все целевые добавки успевают раствориться и равномерно распределится по объему. В машинах непрерывного действия полимерные добавки не успевают раствориться в процессе затворения, так как смесь в камере затворения находится всего несколько минут. Наиболее неприятным следствием этого является снижение адгезии и пластичности состава, а неоднородность смеси приводит к закупориванию подающих шлангов. При работе с агрегатами циклического действия перерывы в работе могут достигать 1-2 и более часов.
Для улучшения адгезии железобетонных конструкций с огнезащитными штукатурками наша компания разработала и предлагает использовать грунт-адгезив защитный концентрированный (ГАЗ-К).
Кроме того, для огнезащиты железобетона используют вспучивающуюся высокодисперсную краску ОЗК-01 и огнезащитные покрытия Изовент®-ПЖ и Изовент®-УП.
www.croz.ru
Огнезащита железобетонных конструкций
Противопожарные муфты выполняет важнейшую функцию пассивной защиты.
Зачем нужны противопожарные муфты
Во время пожара одной из основных причин быстрого распространения пламени по зданию через стены и перекрытия на последующие этажи и помещения являются коммуникации: канализационные, водоснабжения, кондиционирования. Данные коммуникации чаще всего выполнены в виде стальных труб с изоляцией, кабелей в полимерной гофре, пластмассовые (полипропиленовые) трубы. При возгорании полимерный материал очень быстро воспламеняется, и в местах выхода труб через стены и потолки пожар может легко перейти из одной части здания в другие. Установка противопожарных муфт в системах внутренних коммуникаций поможет блокировать распространение огня по всем помещениям.
Как работают противопожарные муфты
При воздействии высоких температур (более 220°С) происходит вспенивание терморасширяющегося материала противопожарной муфты и образуется плотный слой пенококса, который как пробка перекрывает отверстие на месте прохода трубы.
Разновидности противопожарных муфт
Условно противопожарные муфты ОГРАКС® можно разделить на муфты с металлическим корпусом ОГРАКС®-ПМ и муфты ОГРАКС®-ПМГ, состоящие из противопожарной манжеты с фиксатором. В первом случае муфты ОГРАКС®-ПМ представляют собой разъемный металлический каркас с замком, в котором находится вкладыш из термрасширяющегося материала на основе окисленного графита ОГРАКС®. Во втором случае противопожарная муфта ОГРАКС®-ПМГ представляется собой отсечное защитное устройство на основе противопожарной терморасширяющейся ленточной манжеты ОГРАКС®-Л3 на подложке из подложки из огнеупорной кремнеземной ткани и фиксатора.
Монтаж
Процесс монтажа противопожарных муфт довольно прост. ОГРАКС®-ПМ жестко крепится болтами к стене или потолочному перекрытию. Ленточная манжета ОГРАКС®-Л3 оборачивается вокруг защищаемой трубы (кабеля) и монтируется внутри стены или перекрытия.
Чем регламентируется применение противопожарных муфт
Применение противопожарных муфт для огнезащиты коммуникаций регламентируется следующими документами:
· Федеральный закон № 123 от 22.07.2008 «Технический регламент о требованиях пожарной безопасности». Глава 31.
· ГОСТ Р 53306-2009 «Узлы пересечения ограждающих строительных конструкций трубопроводами из полимерных материалов. Метод испытания на огнестойкость».
Где применяются противопожарные муфты
Противопожарные муфты нашли широкое применение в гражданском строительстве.www.ograx.ru
Требования и решения для огнезащиты железобетонных конструкций.
Полный текст документа ЗАЩИТА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ОТ КОРРОЗИИ СНиП 2.03.11-85
5.4 Требования к материалам и конструкциям
5.4.1 Требования к бетону и строительным конструкциям должны назначаться исходя из необходимости обеспечения проектного срока эксплуатации здания или сооружения.
5.4.2 Требования по обеспечению коррозионной стойкости бетона для каждых условий эксплуатации должны включать в себя:
1) разрешенные виды и марки (классы) составляющих бетона;
2) минимально необходимое содержание цемента в бетоне;
3) минимальный класс бетона по прочности на сжатие;
4) минимальную допускаемую марку бетона по водонепроницаемости и/или максимальный допускаемый коэффициент диффузии хлоридов или углекислого газа;
5) минимальный объем вовлеченного воздуха или газа (для бетонов с требованиями по морозостойкости).
Цементы
5.4.3 В качестве вяжущих для приготовления бетонов (таблица Д.2) следует применять:
1) портландцемент, портландцемент с минеральными добавками, шлакопортландцемент поГОСТ 10178, ГОСТ 30515, ГОСТ 31108;
2) сульфатостойкие цементы по ГОСТ 22266;
3) глиноземистые цементы по ГОСТ 969.
Допускается применение цементов (вяжущих) низкой водопотребности (ЦНВ, ВНВ), напрягающих и безусадочных цементов и других вяжущих, приготовленных на основе указанных выше цементов. При этом следует подтвердить соответствие коррозионной стойкости и морозостойкости бетона на указанных вяжущих и стойкости арматуры в этих бетонах условиям эксплуатации конструкций, зданий и сооружений.
В газообразных и твердых средах (таблицы Б.1, Б.3) следует применять портландцемент, портландцемент с минеральными добавками, шлакопортландцемент.
В жидких средах (таблицы В.3, В.4, В.5) и грунтах (таблица В.1), содержащих сульфаты, следует применять сульфатостойкие цементы, шлакопортландцементы и портландцементы, в том числе портландцементы нормированного минералогического состава, а также портландцементы с добавками, повышающими сульфатостойкость бетона.
В средах, агрессивных по содержанию хлоридов (таблицы В.2, В.3, Г.1, Г.2), следует применять портландцемент, портландцемент с минеральными добавками, шлакопортландцемент или пуццолановый портландцемент с учетом требований к бетону по морозостойкости.
В жидких средах, агрессивных по суммарному содержанию солей при наличии испаряющих поверхностей (таблица В.3), допускается применение глиноземистого цемента при условии соблюдения требования к температурному режиму твердения бетона.
Для бетонных и железобетонных конструкций с предварительно напряженной арматурой применение глиноземистого цемента не допускается.
В бетонных и железобетонных конструкциях, к бетону которых предъявляются требования по водонепроницаемости марок свыше W6, допускается применение цемента с компенсированной усадкой и напрягающего цемента.
Рекомендуемые виды цемента приведены в таблице Д.2.
Заполнители
5.4.4 В качестве мелкого заполнителя следует использовать кварцевый песок по ГОСТ 8736 класса I, а также пористый песок по ГОСТ 9757. Песок класса II по ГОСТ 8736 допускается применять для бетона конструкций, эксплуатирующихся в агрессивных средах, при наличии технического обоснования.
В качестве крупного заполнителя для бетона следует использовать фракционированный щебень из изверженных пород, гравий и щебень из гравия марки по дробимости не ниже 800.
Однородный щебень из осадочных пород, не содержащий слабых включений, с маркой по дробимости не ниже 600 и водопоглощением не выше 2% допускается применять для изготовления конструкций, эксплуатируемых в газообразных, твердых и жидких средах при любой степени агрессивного воздействия, за исключением жидких сред, имеющих водородный показатель рН ниже 4.
Для конструкционных легких бетонов следует применять искусственные и природные пористые заполнители по .
Наличие и количество в заполнителях вредных примесей должно быть указано в соответствующей документации на заполнитель и учитываться при проектировании бетонных и железобетонных конструкций. Мелкий и крупный заполнители должны быть проверены на содержание потенциально реакционно-способных пород. При наличии в составе заполнителей реакционно-способных пород следует предусматривать в качестве мер защиты от коррозии, вызываемой взаимодействием реакционно-способных пород заполнителя со щелочами цемента, следующие мероприятия:
1) подбор состава бетона с минимальным расходом цемента;
3) изготовление бетона на портландцементах с минеральными добавками, пуццолановом портландцементе и шлакопортландцементе;
4) применение активных минеральных добавок в составе бетона;
5) введение в состав бетона гидрофобизирующих и газовыделяющих добавок;
6) запрещение вводить в состав бетона противоморозные добавки и добавки ускорители твердения, содержащие соли натрия и калия - поташ, нитрит натрия, сульфат натрия и др.;
7) введение добавок солей лития;
8) разбавление заполнителей с примесями реакционно-способных пород заполнителем, не содержащим реакционно-способных компонентов;
9) создание сухих условий эксплуатации.
Эффективность указанных мероприятий при использовании конкретного заполнителя должна быть доказана испытаниями по методикам ГОСТ 8269.0.
Для высокопрочных бетонов следует применять заполнители нереакционно-способные со щелочами цемента.
Добавки
5.4.5 Для повышения стойкости бетона железобетонных конструкций, эксплуатируемых в агрессивных средах, следует использовать добавки по ГОСТ 24211, снижающие проницаемость бетона и повышающие его химическую стойкость и морозостойкость, усиливающие защитное действие бетона по отношению к арматуре, а также повышающие стойкость бетона в условиях воздействия биологически активных сред.
Общее количество химических добавок при их применении для приготовления бетона не должно составлять более 5% массы цемента. При большем количестве добавок требуется экспериментальное подтверждение коррозионной стойкости бетона.
Добавки, применяемые при изготовлении железобетонных изделий и конструкций, не должны оказывать коррозионного воздействия на бетон и арматуру.
Максимально допустимое содержание хлоридов в бетоне, выраженное в процентах ионов хлоридов к массе цемента, не должно превышать значений, указанных в таблице Г.3.
В состав бетона не допускается введение хлоридов (хлориды натрия, кальция и др.) при изготовлении следующих железобетонных конструкций:
1) с напрягаемой арматурой;
2) с ненапрягаемой проволочной арматурой диаметром 5 мм и менее;
3) эксплуатируемых в условиях влажного или мокрого режима;
4) с автоклавной обработкой;
5) подвергающихся электрокоррозии.
Не допускается введение хлоридов в состав бетонов и растворов для инъектирования каналов предварительно напряженных конструкций, а также для замоноличивания швов и стыков сборных и сборно-монолитных железобетонных конструкций.
Добавки, содержащие нитраты, нитриты, тиоцианаты (роданиды) и формиаты, допускается применять в бетонах для преднапряженных конструкций в агрессивных средах, если применяется арматурная сталь с индексом К.
Применение добавок электролитов в бетоне конструкций, подвергающихся электрокоррозии, не допускается.
Количество вводимых в бетон минеральных добавок следует определять, исходя из требований обеспечения необходимой коррозионной стойкости бетона на уровне не ниже, чем у бетона без таких добавок.
5.4.6 Воду для затворения бетонной смеси и увлажнения твердеющего бетона следует применять в соответствии с ГОСТ 23732. Применение рециклированной и комбинированной (смешанной) воды для бетонов конструкций, предназначенных для эксплуатации в агрессивных средах, допускается при наличии экспериментального подтверждения коррозионной стойкости бетона.
5.4.7 Требования к бетону в зависимости от классов сред эксплуатации приведены в таблице Д.1. Данная таблица используется с учетом таблиц, регламентирующих марки бетона по водонепроницаемости, диффузионной проницаемости, морозостойкости. Показатели бетона по проницаемости приведены в таблице Е.1.
5.4.9 Бетоны конструкций зданий и сооружений, подвергающихся воздействию воды и знакопеременных температур, марок по морозостойкости более F150 следует изготавливать с применением воздухововлекающих или микрогазообразующих добавок, а также комплексных добавок на их основе. Объем вовлеченного воздуха в бетонной смеси для изготовления железобетонных конструкций и изделий должен соответствовать значениям, указанным в , и других нормативных документах на бетоны конкретных видов.
5.4.10 Подбор состава бетона с учетом воздействия среды эксплуатации рекомендуется выполнять в специализированных лабораториях научно-исследовательских институтов, университетов, других научно-исследовательских организаций в случаях, если:
1) заданные проектом сроки эксплуатации здания и сооружения существенно превышают 50 лет, а также, если здание или сооружение имеет повышенный уровень ответственности по ГОСТ Р 54257;
2) среда эксплуатации агрессивна, но характер агрессивности не ясен;
3) возможно повышение агрессивности среды в период эксплуатации здания или сооружения;
4) планируется массовое возведение однотипных конструкций;
5) для приготовления бетона используются новые материалы (цементы, заполнители, наполнители, добавки и т.п.).
5.4.11 Расчет железобетонных конструкций, подверженных воздействию агрессивных сред, следует выполнять с учетом категории требований к трещиностойкости и предельно допустимой ширины раскрытия трещин в бетоне, для газообразных и твердых агрессивных сред по таблице Ж.3, а для жидких агрессивных сред - по таблице Ж.4.
5.4.12 При реконструкции зданий и сооружений рекомендуется выполнять поверочный расчет конструкций с учетом коррозионного износа бетона и арматуры.
5.4.13 Арматурные стали по степени опасности коррозионного повреждения подразделяются на группы I-II. Группа III включает в себя неметаллическую композитную арматуру.
Группа I. Арматура для конструкций без предварительного напряжения горячекатаная, горячекатаная и термомеханически упрочненная, поставляемая в стержнях и мотках.
Группа II. Напрягаемая арматура в виде горячекатаных и термомеханически упрочненных стержней с нормированной стойкостью против коррозионного растрескивания, а также высокопрочная арматурная проволока и канаты из проволоки.
При армировании 7-проволочными прядями торцы конструкций должны быть заглушены или арматура должна иметь защитное покрытие.
Для армирования предварительно напряженных железобетонных конструкций, эксплуатируемых в агрессивных средах, предпочтительнее применять арматурные стали группы II и неметаллическую арматуру группы III.
В железобетонных конструкциях без предварительного напряжения, эксплуатируемых в среднеагрессивных и сильноагрессивных средах, допускается применение термомеханически упрочненной арматуры классов А400, А500, горячекатаной арматуры класса А500 и холоднодеформированной арматуры классов А500 и В500, выдерживающих испытания на стойкость против коррозионного растрескивания по ГОСТ 10884 и ГОСТ 31383 в течение не менее 40 ч. В агрессивных средах для армирования рекомендуется применять неметаллическую композитную арматуру, отвечающую требованиям нормативно-технической документации на нее.
5.4.14 Требования к толщине защитного слоя и проницаемости бетона при воздействии газообразных и твердых агрессивных сред следует устанавливать в соответствии с таблицами Ж.3 и Ж.5, при воздействии жидких сред - с таблицей Ж.4, а при воздействии жидких хлоридных сред - с таблицей Г.1.
5.4.15 Толщину защитного слоя тяжелого и легкого бетонов конструкций плоских плит, полок ребристых плит и полок стеновых панелей допускается принимать равной 15 мм для слабоагрессивной и среднеагрессивной степени воздействия газообразной среды и 20 мм - для сильноагрессивной степени, независимо от класса арматурных сталей. Для неметаллической композитной арматуры толщина защитного слоя назначается из условия обеспечения совместной работы арматуры с бетоном.
Толщину защитного слоя монолитных конструкций следует принимать на 5 мм более значений, указанных в таблицах Г.1, Ж.3, Ж.4, Ж.5.
Для предварительно напряженных железобетонных конструкций 2-й категории трещиностойкости ширину непродолжительного раскрытия трещин допускается увеличивать на 0,05 мм при повышении толщины защитного слоя на 10 мм.
5.4.16 Для конструкций 3-й категории трещиностойкости применение проволоки классов B-I и Вр-I диаметром менее 4 мм не допускается в конструкциях, предназначенных для эксплуатации в агрессивных средах.
5.4.17 Арматурные канаты для предварительно напряженных железобетонных конструкций следует изготавливать из проволоки диаметром не менее 2,5 мм в наружных и не менее 2,0 мм - во внутренних слоях каната.
5.4.18 Применение бетонных и железобетонных конструкций из легких бетонов в агрессивных средах допускается наравне с тяжелыми бетонами при соответствии их физико-технических характеристик соответствующим характеристикам тяжелых бетонов.
5.4.19 Несущие конструкции из легких бетонов на пористых заполнителях с водопоглощением свыше 14% объема для применения в агрессивных средах не допускаются.
5.4.20 Ограждающие конструкции из легких и ячеистых бетонов для производств с агрессивными газообразными и твердыми средами следует применять в соответствии с таблицей Л.1.
5.4.21 Железобетонные конструкции из армоцемента допускается применять в слабоагрессивной газообразной, жидкой и твердой средах при условии армирования оцинкованной арматурой или неметаллической композитной арматурой. В жидкой и твердой средах необходимо применять вторичную защиту поверхности армоцементных конструкций.
kurgan.lkm1.ru
Огнезащита железобетонных конструкций
Для повышения пределов огнестойкости железобетонных конструкций мы выполняем работы по огнезащитной обработке железобетона путем нанесения огнезащитных составов, красок, штукатурок, а также осуществляем монтаж теплоизоляционных плит.
Огнезащитные составы и краски предназначены для повышения пределов огнестойкости железобетонных конструкций до 120 минут и более.
При проектировании мероприятий по огнезащите железобетонных конструкций следует учитывать, что применение огнезащиты на основе базальтовых плит или штукатурок для железобетонных конструкций приводит к увеличению массивности железобетонных конструкции, сокращению внутренней площади помещений и увеличению нагрузки на несущие конструкции.
Огнезащитное покрытие, которое образуется поверх обрабатываемой железобетонной конструкции в результате нанесения тонкослойного огнезащитного покрытия на основе огнезащитной краски или огнезащитного состава для железобетонных конструкций (например, ОЗК-01, Джокер М, Флексил 521, Терма Люкс-БК, ВУП-2Б) обеспечивае замедление скорости прогрева рабочей арматуры железобетонной конструкции, а также снижает вероятность взрывообразного разрушения бетона.
Огнезащитная эффективность тонкослойных огнезащитных покрытий на основе огнезащитных красок для железобетонных конструкций (например, Джокер М, ВУП-2Б, ОЗК-01, Терма Люкс-БК) и огнезащитных составов для повышения огнестойкости железобетонных конструкций (например, Флексил 521) при огнезащитной обработке железобетонных конструкций с нормированным пределом огнестойкости от 90 минут, от 120 минут (REI 120 )и выше, наиболее оптимальна при толщине огнезащитного покрытия для железобетонных конструкций от 1 мм до 2 мм и более.
Компания "ОЛМИР-СТРОЙ" располагает всеми необходимыми документами, материалами и инструментами для выполнения работ по огнезащите железобетонных конструкций любой сложности. Специалисты компании имеют большой опыт работы в области огнезащиты железобетонна. Мы производим монтаж конструктивной огнезащиты облицовочными огнестойкими плитами, осуществляем нанесение покрытий штукатурными составами, пастами и мастиками, выполняем работы по нанесению огнезащитных красок и составов.
Огнезащита железобетонных конструкций выполняются в полном соответствии с действующими нормами пожарной безопасности. Надлежащее качество выполненных работ по огнезащите металлических конструкций будет подтверждено заключением пожарной лаборатории.
ООО «ОЛМИР-СТРОЙ» выполняет работы по огнезащите материалов, изделий и конструкций на основании: лицензии МЧС № 8-Б / 03790, СРО-С-267-16052013
Консультацию по вопросам огнезащиты металлоконструкций Вы можете получить, обратившись к нашим специалистам по телефонам: (495) 407-01-21, (926) 146-94-73
olmir-stroy.ru
Огнезащита железобетонных конструкций
Бетон и железобетон – один из самых используемых в строительстве материалов. Наряду с такими его достоинствами, как хорошая прочность и долговечность, бетон обладает еще и достаточно высокой степенью огнестойкости. Однако в случае долгого взаимодействия с огнем и он сдает свои позиции. Например, при нагревании до 200 градусов бетон становится менее прочным на целую треть, а при удвоении этой температуры и вовсе разрушается. Причем в отдельных случаях (например, при высокой влажности) это сопровождается еще и взрывом. А значит и железобетонные конструкции в огнезащите нуждаются не меньше, чем деревянные. Особенно это актуально для конструкций, имеющих внутри пустоты или изготовленных из полимерного бетона.
Огнезащитная обработка бетона повышает степень огнестойкости и в чрезвычайной ситуации замедляет распространение пожара, давая тем самым время эвакуировать людей и спасти имущество до прибытия пожарной помощи. А поскольку, согласно статистическим данным, большинство случаев гибели людей во время пожара происходит именно вследствие обрушения невыдержавших испытание огнем здания, то проблема огнезащиты железобетонных конструкций становится предельно актуальной.
На сегодняшний день есть множество способов, обеспечивающих более высокую огнезащиту бетону. Например, можно нанести еще один слой, и это будет весьма бюджетный вариант. Но он увеличит вес общей конструкции, а значит, потребуется дополнительное укрепление фундамента и, соответственно, выльется в новые статьи расходов. Используется в современном строительстве и облицовка огнеупорными панелями. Однако это более дорогой способ и достаточно трудоемкий.
Поэтому самый лучший метод придать высокую огнезащиту железобетонным конструкциям – нанести на их поверхность специальные химические составы: лаки, краски, мастики. И здесь тоже есть выбор: действие некоторых составов основано на выделении газа, угнетающего горение, а другие средства защиты при повышении температуры образуют негорючую пену, обеспечивая теплоизоляцию обработанной площади. Вдобавок многие составы обладают еще и тепло- и звукоизоляционными характеристиками, что, несомненно, делает их более привлекательными для использования.
Несмотря на кажущуюся, на первый взгляд, простоту обработки материала огнезащитными составами, выполнять такую работу следует только силами профессиональных подрядчиков. Лишь специалисты с большим опытом смогут определить наиболее подходящий способ огнезащиты, учитывая характеристики материала и область его применения. А еще произвести все работы качественно, в срок (что тоже немало важно) и дать гарантию на свою работу. И, естественно, на занятие подобной деятельностью у компании-исполнителя должна иметься соответствующая лицензия. А поскольку вопрос огнезащиты здания – вопрос жизненной важности, то и к выбору подрядчика стоит отнестись со всей серьезностью.
lir.ooo
Требования и решения для огнезащиты железобетонных конструкций.
Полный текст документа ЗАЩИТА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ОТ КОРРОЗИИ СНиП 2.03.11-855.4 Требования к материалам и конструкциям
5.4.1 Требования к бетону и строительным конструкциям должны назначаться исходя из необходимости обеспечения проектного срока эксплуатации здания или сооружения.
5.4.2 Требования по обеспечению коррозионной стойкости бетона для каждых условий эксплуатации должны включать в себя:
1) разрешенные виды и марки (классы) составляющих бетона;
2) минимально необходимое содержание цемента в бетоне;
3) минимальный класс бетона по прочности на сжатие;
4) минимальную допускаемую марку бетона по водонепроницаемости и/или максимальный допускаемый коэффициент диффузии хлоридов или углекислого газа;
5) минимальный объем вовлеченного воздуха или газа (для бетонов с требованиями по морозостойкости).
Цементы
5.4.3 В качестве вяжущих для приготовления бетонов (таблица Д.2) следует применять:
1) портландцемент, портландцемент с минеральными добавками, шлакопортландцемент поГОСТ 10178, ГОСТ 30515, ГОСТ 31108;
2) сульфатостойкие цементы по ГОСТ 22266;
3) глиноземистые цементы по ГОСТ 969.
Допускается применение цементов (вяжущих) низкой водопотребности (ЦНВ, ВНВ), напрягающих и безусадочных цементов и других вяжущих, приготовленных на основе указанных выше цементов. При этом следует подтвердить соответствие коррозионной стойкости и морозостойкости бетона на указанных вяжущих и стойкости арматуры в этих бетонах условиям эксплуатации конструкций, зданий и сооружений.
В газообразных и твердых средах (таблицы Б.1, Б.3) следует применять портландцемент, портландцемент с минеральными добавками, шлакопортландцемент.
В жидких средах (таблицы В.3, В.4, В.5) и грунтах (таблица В.1), содержащих сульфаты, следует применять сульфатостойкие цементы, шлакопортландцементы и портландцементы, в том числе портландцементы нормированного минералогического состава, а также портландцементы с добавками, повышающими сульфатостойкость бетона.
В средах, агрессивных по содержанию хлоридов (таблицы В.2, В.3, Г.1, Г.2), следует применять портландцемент, портландцемент с минеральными добавками, шлакопортландцемент или пуццолановый портландцемент с учетом требований к бетону по морозостойкости.
В жидких средах, агрессивных по суммарному содержанию солей при наличии испаряющих поверхностей (таблица В.3), допускается применение глиноземистого цемента при условии соблюдения требования к температурному режиму твердения бетона.
Для бетонных и железобетонных конструкций с предварительно напряженной арматурой применение глиноземистого цемента не допускается.
В бетонных и железобетонных конструкциях, к бетону которых предъявляются требования по водонепроницаемости марок свыше W6, допускается применение цемента с компенсированной усадкой и напрягающего цемента.
Рекомендуемые виды цемента приведены в таблице Д.2.
Заполнители
5.4.4 В качестве мелкого заполнителя следует использовать кварцевый песок по ГОСТ 8736 класса I, а также пористый песок по ГОСТ 9757. Песок класса II по ГОСТ 8736 допускается применять для бетона конструкций, эксплуатирующихся в агрессивных средах, при наличии технического обоснования.
В качестве крупного заполнителя для бетона следует использовать фракционированный щебень из изверженных пород, гравий и щебень из гравия марки по дробимости не ниже 800.
Однородный щебень из осадочных пород, не содержащий слабых включений, с маркой по дробимости не ниже 600 и водопоглощением не выше 2% допускается применять для изготовления конструкций, эксплуатируемых в газообразных, твердых и жидких средах при любой степени агрессивного воздействия, за исключением жидких сред, имеющих водородный показатель рН ниже 4.
Для конструкционных легких бетонов следует применять искусственные и природные пористые заполнители по .
Наличие и количество в заполнителях вредных примесей должно быть указано в соответствующей документации на заполнитель и учитываться при проектировании бетонных и железобетонных конструкций. Мелкий и крупный заполнители должны быть проверены на содержание потенциально реакционно-способных пород. При наличии в составе заполнителей реакционно-способных пород следует предусматривать в качестве мер защиты от коррозии, вызываемой взаимодействием реакционно-способных пород заполнителя со щелочами цемента, следующие мероприятия:
1) подбор состава бетона с минимальным расходом цемента;
3) изготовление бетона на портландцементах с минеральными добавками, пуццолановом портландцементе и шлакопортландцементе;
4) применение активных минеральных добавок в составе бетона;
5) введение в состав бетона гидрофобизирующих и газовыделяющих добавок;
6) запрещение вводить в состав бетона противоморозные добавки и добавки ускорители твердения, содержащие соли натрия и калия - поташ, нитрит натрия, сульфат натрия и др.;
7) введение добавок солей лития;
8) разбавление заполнителей с примесями реакционно-способных пород заполнителем, не содержащим реакционно-способных компонентов;
9) создание сухих условий эксплуатации.
Эффективность указанных мероприятий при использовании конкретного заполнителя должна быть доказана испытаниями по методикам ГОСТ 8269.0.
Для высокопрочных бетонов следует применять заполнители нереакционно-способные со щелочами цемента.
Добавки
5.4.5 Для повышения стойкости бетона железобетонных конструкций, эксплуатируемых в агрессивных средах, следует использовать добавки по ГОСТ 24211, снижающие проницаемость бетона и повышающие его химическую стойкость и морозостойкость, усиливающие защитное действие бетона по отношению к арматуре, а также повышающие стойкость бетона в условиях воздействия биологически активных сред.
Общее количество химических добавок при их применении для приготовления бетона не должно составлять более 5% массы цемента. При большем количестве добавок требуется экспериментальное подтверждение коррозионной стойкости бетона.
Добавки, применяемые при изготовлении железобетонных изделий и конструкций, не должны оказывать коррозионного воздействия на бетон и арматуру.
Максимально допустимое содержание хлоридов в бетоне, выраженное в процентах ионов хлоридов к массе цемента, не должно превышать значений, указанных в таблице Г.3.
В состав бетона не допускается введение хлоридов (хлориды натрия, кальция и др.) при изготовлении следующих железобетонных конструкций:
1) с напрягаемой арматурой;
2) с ненапрягаемой проволочной арматурой диаметром 5 мм и менее;
3) эксплуатируемых в условиях влажного или мокрого режима;
4) с автоклавной обработкой;
5) подвергающихся электрокоррозии.
Не допускается введение хлоридов в состав бетонов и растворов для инъектирования каналов предварительно напряженных конструкций, а также для замоноличивания швов и стыков сборных и сборно-монолитных железобетонных конструкций.
Добавки, содержащие нитраты, нитриты, тиоцианаты (роданиды) и формиаты, допускается применять в бетонах для преднапряженных конструкций в агрессивных средах, если применяется арматурная сталь с индексом К.
Применение добавок электролитов в бетоне конструкций, подвергающихся электрокоррозии, не допускается.
Количество вводимых в бетон минеральных добавок следует определять, исходя из требований обеспечения необходимой коррозионной стойкости бетона на уровне не ниже, чем у бетона без таких добавок.
5.4.6 Воду для затворения бетонной смеси и увлажнения твердеющего бетона следует применять в соответствии с ГОСТ 23732. Применение рециклированной и комбинированной (смешанной) воды для бетонов конструкций, предназначенных для эксплуатации в агрессивных средах, допускается при наличии экспериментального подтверждения коррозионной стойкости бетона.
5.4.7 Требования к бетону в зависимости от классов сред эксплуатации приведены в таблице Д.1. Данная таблица используется с учетом таблиц, регламентирующих марки бетона по водонепроницаемости, диффузионной проницаемости, морозостойкости. Показатели бетона по проницаемости приведены в таблице Е.1.
5.4.9 Бетоны конструкций зданий и сооружений, подвергающихся воздействию воды и знакопеременных температур, марок по морозостойкости более F150 следует изготавливать с применением воздухововлекающих или микрогазообразующих добавок, а также комплексных добавок на их основе. Объем вовлеченного воздуха в бетонной смеси для изготовления железобетонных конструкций и изделий должен соответствовать значениям, указанным в , и других нормативных документах на бетоны конкретных видов.
5.4.10 Подбор состава бетона с учетом воздействия среды эксплуатации рекомендуется выполнять в специализированных лабораториях научно-исследовательских институтов, университетов, других научно-исследовательских организаций в случаях, если:
1) заданные проектом сроки эксплуатации здания и сооружения существенно превышают 50 лет, а также, если здание или сооружение имеет повышенный уровень ответственности по ГОСТ Р 54257;
2) среда эксплуатации агрессивна, но характер агрессивности не ясен;
3) возможно повышение агрессивности среды в период эксплуатации здания или сооружения;
4) планируется массовое возведение однотипных конструкций;
5) для приготовления бетона используются новые материалы (цементы, заполнители, наполнители, добавки и т.п.).
5.4.11 Расчет железобетонных конструкций, подверженных воздействию агрессивных сред, следует выполнять с учетом категории требований к трещиностойкости и предельно допустимой ширины раскрытия трещин в бетоне, для газообразных и твердых агрессивных сред по таблице Ж.3, а для жидких агрессивных сред - по таблице Ж.4.
5.4.12 При реконструкции зданий и сооружений рекомендуется выполнять поверочный расчет конструкций с учетом коррозионного износа бетона и арматуры.
5.4.13 Арматурные стали по степени опасности коррозионного повреждения подразделяются на группы I-II. Группа III включает в себя неметаллическую композитную арматуру.
Группа I. Арматура для конструкций без предварительного напряжения горячекатаная, горячекатаная и термомеханически упрочненная, поставляемая в стержнях и мотках.
Группа II. Напрягаемая арматура в виде горячекатаных и термомеханически упрочненных стержней с нормированной стойкостью против коррозионного растрескивания, а также высокопрочная арматурная проволока и канаты из проволоки.
При армировании 7-проволочными прядями торцы конструкций должны быть заглушены или арматура должна иметь защитное покрытие.
Для армирования предварительно напряженных железобетонных конструкций, эксплуатируемых в агрессивных средах, предпочтительнее применять арматурные стали группы II и неметаллическую арматуру группы III.
В железобетонных конструкциях без предварительного напряжения, эксплуатируемых в среднеагрессивных и сильноагрессивных средах, допускается применение термомеханически упрочненной арматуры классов А400, А500, горячекатаной арматуры класса А500 и холоднодеформированной арматуры классов А500 и В500, выдерживающих испытания на стойкость против коррозионного растрескивания по ГОСТ 10884 и ГОСТ 31383 в течение не менее 40 ч. В агрессивных средах для армирования рекомендуется применять неметаллическую композитную арматуру, отвечающую требованиям нормативно-технической документации на нее.
5.4.14 Требования к толщине защитного слоя и проницаемости бетона при воздействии газообразных и твердых агрессивных сред следует устанавливать в соответствии с таблицами Ж.3 и Ж.5, при воздействии жидких сред - с таблицей Ж.4, а при воздействии жидких хлоридных сред - с таблицей Г.1.
5.4.15 Толщину защитного слоя тяжелого и легкого бетонов конструкций плоских плит, полок ребристых плит и полок стеновых панелей допускается принимать равной 15 мм для слабоагрессивной и среднеагрессивной степени воздействия газообразной среды и 20 мм - для сильноагрессивной степени, независимо от класса арматурных сталей. Для неметаллической композитной арматуры толщина защитного слоя назначается из условия обеспечения совместной работы арматуры с бетоном.
Толщину защитного слоя монолитных конструкций следует принимать на 5 мм более значений, указанных в таблицах Г.1, Ж.3, Ж.4, Ж.5.
Для предварительно напряженных железобетонных конструкций 2-й категории трещиностойкости ширину непродолжительного раскрытия трещин допускается увеличивать на 0,05 мм при повышении толщины защитного слоя на 10 мм.
5.4.16 Для конструкций 3-й категории трещиностойкости применение проволоки классов B-I и Вр-I диаметром менее 4 мм не допускается в конструкциях, предназначенных для эксплуатации в агрессивных средах.
5.4.17 Арматурные канаты для предварительно напряженных железобетонных конструкций следует изготавливать из проволоки диаметром не менее 2,5 мм в наружных и не менее 2,0 мм - во внутренних слоях каната.
5.4.18 Применение бетонных и железобетонных конструкций из легких бетонов в агрессивных средах допускается наравне с тяжелыми бетонами при соответствии их физико-технических характеристик соответствующим характеристикам тяжелых бетонов.
5.4.19 Несущие конструкции из легких бетонов на пористых заполнителях с водопоглощением свыше 14% объема для применения в агрессивных средах не допускаются.
5.4.20 Ограждающие конструкции из легких и ячеистых бетонов для производств с агрессивными газообразными и твердыми средами следует применять в соответствии с таблицей Л.1.
5.4.21 Железобетонные конструкции из армоцемента допускается применять в слабоагрессивной газообразной, жидкой и твердой средах при условии армирования оцинкованной арматурой или неметаллической композитной арматурой. В жидкой и твердой средах необходимо применять вторичную защиту поверхности армоцементных конструкций.
lkm1.ru