Нормативные и расчётные сопротивления бетона - интересное. Нормативное сопротивление бетона сжатию
Нормативные и расчетные характеристики бетона
2.8. Нормативными сопротивлениями бетона являются сопротивление осевому сжатию призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn.
Нормативное сопротивление Rbn принято равным
Rbn = (0.85 - 0.00135 В) В, (10)
но не менее 0,8 В, где В - в МПа.
Нормативное сопротивление Rbtn принято равным
(11)
где B - в МПа.
Нормативные сопротивления бетона Rbn с округлением в зависимости от класса бетона по прочности на сжатие приведены в табл. 8.
2.9. Расчетные сопротивления бетона для предельных состояний первой и второй групп определяются путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по бетону при сжатии gbc или при растяжении gbt, принимаемые по табл. 9.
Значения расчетных сопротивлений бетона в зависимости от класса бетона по прочности на сжатие для предельных состояний первой группы Rb и Rbt, приведены (с округлением) в табл. 10, для предельных состояний второй группы Rb.ser и Rbt.ser - в табл. 8.
2.10. Расчетные сопротивления бетона для предельных состояний первой группы Rb, и Rbt, приведенные в табл. 10, следует снижать (или повышать) путем умножения на коэффициенты условий работы бетона ¡bc учитывающие особенности свойств бетона, длительность действия нагрузки и ее многократную повторяемость, условия и стадию работы конструкций, способ их изготовления, размеры сечения и т. п. Значения коэффициентов ¡bi, приведены в табл. 11.
Таблица 8
Вид сопротивления | Нормативные сопротивления бетона Rbn, Rbtn и расчетные сопротивления бетона для предельных состояний второй группы Rb/ser и Rbt.ser при классе бетона по прочности на сжатие | ||||||||
В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | |
Сжатие осевое (призменная прочность) Rbn и Rb.ser | 8,4 85,7 | 10,4 106 | 12,4 127 | 16,5 168 | 20,4 208 | 24,3 248 | 28,1 286 | 32,0 326 | 35,5 362 |
Растяжение осевое Rbtn и Rbt.ser | 0,9 9,2 | 1,05 | 1,15 11,7 | 1,40 14,3 | 1,60 16,3 | 1,75 17,8 | 1,90 19,4 | 2,0 20,4 | 2,10 21,4 |
П р и м е ч а н и е: Над чертой указаны значения в МПа, под чертой - в кгс/см2.
Таблица 9
Группа предельных | Коэффициенты надежности по бетону | |
состояний | при сжатии gbc | при растяжении gbt |
Первая | 1,35 | 1,55 |
Вторая | 1,00 | 1,00 |
2.11. Расчетные сопротивления при растяжении Rbt.ser предельных состояний второй группы при расчете по деформациям следует увеличивать путем умножения на коэффициент условий работы бетона gbt1 =1,4, а при расчете по образованию нормальных и наклонных трещин от многократно повторных нагрузок, а также при расчете по образованию наклонных трещин от любых нагрузок - уменьшать путем умножения на коэффициент условий работы бетона соответственно gb1, и gb4, значения которых приведены в табл. 11 и 12.
2.12. Значения начального модуля упругости бетона Eb, при сжатии и растяжении принимаются по табл. 13.
Для незащищенных от солнечной радиации конструкций, предназначенных для эксплуатации в климатическом подрайоне IVA согласно СНиП 2.01.01-82, значения Еb, указанные в табл. 13, следует умножать на коэффициент 0,85.
Для бетона, подвергающегося попеременному замораживанию и оттаиванию, значения Еb, указанные в табл. 13, следует умножать на коэффициент условий работы бетона gb6, принимаемый по табл. 17 СНиП 2.03.01-84.
При наличии данных о составе бетона, условиях изготовления и т. д. допускается принимать другие значения Еb, согласованные в установленном порядке.
2.13. Предельные значения характеристики ползучести бетона jb следует определять в зависимости от влажностного режима эксплуатации конструкций по формуле
(12)
где jьт - предельные значения характеристики ползучести бетона при влажности окружающей воздушной среды 40-75 %, принимаемые по табл. 14 настоящих норм;
h2 - коэффициент, принимаемый равным при относительной влажности внутреннего воздуха, %:
свыше 75 или во влажной зоне. . . . . . . . . . . . . . . . . . . . . . . 1,1
от 40 до 75 или в зоне нормальной влажности. . . . . . . . . .1,0
до 40 или в сухой зоне. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,9
2.14. Коэффициент линейной температурной деформации бетона abt при изменении температур от минус 50 до плюс 50 °С следует принимать равным 110-5 °С-1.
При наличии данных о минералогическом составе заполнителей, составе и водонасыщении бетона и т. п. допускается принимать другие значения abt, обоснованные в установленном порядке.
Для расчетной температуры ниже минус 50 С величину abt следует принимать по экспериментальным данным.
2.15. Начальный коэффициент поперечной деформации бетона (коэффициент Пуассона) n следует принимать равным 0,2, а модуль сдвига бетона G- равным 0,4 соответствующих значений Еb, указанных в табл. 13.
Таблица 10
Вид сопротивления | Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt при классе бетона по прочности на сжатие | ||||||||
В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | |
Сжатие осевое (призменная прочность) Rb | 6,2 63 | 7,7 84 | 9,2 94 | 12,2 124 | 15,1 154 | 18,0 184 | 20,8 212 | 23,7 242 | 26,3 268 |
Растяжение осевое Rbt | 0,58 5,9 | 0,68 6,9 | 0,74 7,5 | 0,90 9,2 | 1,03 10,5 | 1,13 11,5 | 1,23 12,5 | 1,29 13,1 | 13,8 |
П р и м е ч а н и е. Над чертой указаны значения в МПа, под чертой - в кгс/см2.
Таблица 11
Коэффициенты условий работы бетона | ||
Факторы, обусловливающие введение коэффициентов условий работы бетона | условное обозначение | числовое значение |
1. Многократно повторяющаяся нагрузка | gb1 | См. табл. 12 |
2. Длительность действия нагрузки: | ||
а) при учете постоянных, длительных и кратковременных нагрузок, кроме нагрузок непродолжительного действия, суммарная длительность которых за период эксплуатации мала (например, крановые нагрузки; нагрузки от транспортных средств; ветровые нагрузки; нагрузки, возникающие при изготовлении, транспортировании и возведении и т.п.), а также при учете особых нагрузок, вызванных деформациями просадочных, набухающих, вечномерзлых и подобных грунтов; | gb2 | 0,85 |
б) при учете в рассматриваемом сочетании кратковременных нагрузок непродолжительного действия или особых нагрузок, не указанных в поз. 2а | 1,00 | |
3. Бетонирование в вертикальном положении при высоте слоя бетонирования свыше 1,5 м | gb3 | 0,85 |
4. Влияние двухосного сложного напряженного состояния „сжатие - растяжение" на прочность бетона | gb4 | См. п.4.11 СНиП 2.03.01-84 |
5. Попеременное замораживание и оттаивание | gb6 | См. табл. 17 СНиП 2.03.01-84 |
6. Эксплуатация не защищенных от солнечной радиации конструкций в климатическом подрайоне IVA согласно СНиП 2.01.01-82 | gb7 | 0,85 |
7. Бетонные конструкции | gb9 | 0,90 |
8. Стыки сборных элементов при толщине шва менее 1/5 наименьшего размера сечения элемента и менее 10 см | gb12 | 1,15 |
9. Сжатые элементы с содержанием арматуры S менее 0,3 % площади сечения бетона при эксцентриситете продольного усилия е0 > 0,3h | gb13 | 0,90 |
10. Простенки площадью сечения менее 0,1 м2 в стеновых панелях | gb14 | 0,80 |
11. Особенности упругопластических свойств бетона классов: В30, В35 | gb15 | 0,95 |
В40 | 0,90 | |
В45 | 0,85 | |
12. Неравномерность распределения прочности бетона всех классов по высоте сечения конструкций | gb16 | 0,85 |
Примечания. Коэффициенты условий работы бетона по поз. 1, 2, 5, 6, 7 должны учитываться при определении расчетных сопротивлений бетона Rb, и Rbt по поз. 4 - при определении Rbt,ser а по остальным позициям - только при определении Rb.
2. Для конструкций, находящихся под действием многократно повторяющейся нагрузки, коэффициент gb2 учитывается при расчете по прочности, а gb1- при расчете на выносливость и по образованию трещин.
3. При расчете конструкций в стадии предварительного обжатия коэффициент gb2принимается равным единице.
4. Коэффициенты условий работы бетона вводятся независимо друг от друга, но при этом их произведение должно быть не менее 0,45.
Таблица 12
Коэффициенты асимметрии цикла напряжений в бетоне rb | 0‑0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 |
Коэффициент gb1 | 0,50 | 0,55 | 0,60 | 0,70 | 0,75 | 0,80 | 0,85 |
В табл. 12
где и ‑ соответственно наименьшее и наибольшее напряжения в бетоне в пределах цикла изменения нагрузки, определяемые согласно п. 3.47 СНиП 2.03.01-84 с учетом требований п. 3.14 настоящих норм.
Таблица 13
Бетон | Начальные модули упругости при сжатии и растяжении Eb×10-3 при классе бетона по прочности на сжатие | ||||||||
В10 | B12,5 | B15 | B20 | B25 | В30 | В35 | В40 | В45 | |
На известково-песчаном вяжущем | 9,9 101 | 11,9 121 | 13,8 141 | 16,5 168 | 18,8 192 | 20,7 211 | 22,0 224 | 23,0 235 | 23,6 241 |
На известково-шлаковом вяжущем | 11,8 120 | 14,2 145 | 16,5 168 | 19,8 202 | 22,5 229 | 24,8 253 | 26,4 269 | 27,6 281 | 28,3 288 |
Примечания: 1. Над чертой указаны значения Eb×10-3 в МПа, под чертой ‑ в кгс/см2.
2. При расчете слоистых конструкций по предельным состояниям первой группы в тех случаях, когда в расчете учитываются слои не только из плотного силикатного бетона, но и из других материалов, приведенные в данной таблице значения модуля упругости плотного силикатного бетона следует увеличивать или уменьшать на 30 % исходя из отклонения в сторону, неблагоприятную для расчета.
Таблица 14
Бетон | Предельные значения характеристики ползучести jbm при классе бетона по прочности на сжатие | ||||||||
В10 | В12,5 | B15 | B20 | B25 | B30 | B35 | В40 | B45 | |
На известково-песчаном вяжущем | 2,00 | 2,00 | 1,75 | 1,50 | 1,50 | 1,25 | 1,25 | 1,00 | 1,00 |
Примечания: 1. Для плотного силикатного бетона на известково-шлаковом вяжущем предельное значение характеристики ползучести jbm следует принимать для рассмотренных классов бетона равным единице.
2. При наличии данных о составе бетона в условиях изготовления конструкций допускается принимать другие значения jb, согласованные в установленном порядке.
3. Влажность воздуха окружающей среды следует определять согласно указаниям п. 1.8 СНиП 2.03.01-84.
studfiles.net
Нормативные и расчётные сопротивления бетона
С точки зрения математической статистики прочность бетона или арматуры является величиной случайной, колеблющейся в определённых пределах.
Прочностные характеристики бетона в силу существенной неоднородности его структуры обладают значительной изменчивостью. За нормативное сопротивление бетона осевому сжатию принимают предел прочности осевому сжатию бетонных призм размерами 150´150´600 мм с обеспеченностью 0,95. Эта характеристика контролируется путём проведения испытаний.
Теоретическая кривая плотности распределения прочности бетона при испытании большого количества образцов обычно представляет собой кривую, соответствующую нормальному закону распределения случайных величин по Гауссу (рис. 33).
Рис. 33. К установлению значений нормативных и расчётных сопротивлений бетона при сжатии
Под обеспеченностью понимают вероятность попадания случайных величин, выражающих прочность бетона, в интервал от до ∞. Таким образом, на рис. 33 обеспеченность, равная 0,95, выразится заштрихованной площадью, которая определяется как
(2.3)
Зная значение σ,можно назначить такое значение , частота появления которого была бы заранее задана
, (2.4)
где 1,64 – показатель надёжности, соответствующий обеспеченности 95%; =0,135 – средний коэффициент вариации призменной прочности бетона, принятый по стране.
Если прочность бетона на осевое сжатие контролируется лишь на образцах в форме кубов, то определяют в зависимости от класса бетона по прочности на осевое сжатие В по формуле:
(2.5)
При отсутствии контроля класса бетона по прочности на осевое растяжение, когда Btне определяется путём проведения испытаний, для определения нормативного сопротивления бетона осевому растяжению рекомендуется формула:
(2.6)
Расчётное сопротивление бетона осевому сжатию для расчёта по предельным состояниям первой группы получают по формуле:
(2.7)
где = 1,3 – коэффициент надёжности по бетону при сжатии.
Это расчётное сопротивление соотносится со средней призменной прочностью, полученной при испытании призм до разрушения, как:
(2.8)
Аналогично определяется расчётное сопротивление бетона осевому растяжению для расчёта по предельным состояниям первой группы
(2.9)
где – коэффициент надёжности по бетону при растяжении; = 1,3 – при систематическом контроле прочности бетона при осевом растяжении; = 1,5 – при отсутствии такового.
Численные значения расчётных сопротивлений и для различных классов бетона даны в табл. 5.1 и 5.2 СП 52-101-2003.
Расчётные сопротивления бетона при расчёте по предельным состояниям первой группы назначены в нормах с высокой обеспеченностью равной 0,99865.
В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы (gbi), учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.):
а) gb1 – для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений Rb и Rbt и учитывающий влияние длительности действия статической нагрузки:
gb1 = 1,0 – при непродолжительном (кратковременном) действии нагрузки;
gb1 = 0,9 – при продолжительном (длительном) действии нагрузки;
б) gb2 – для бетонных конструкций, вводимый к расчетным значениям сопротивления Rb и учитывающий характер разрушения таких конструкций. gb2 = 0,9;
в) gb3 – для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона Rb. gb3 = 0,85.
Влияние попеременного замораживания и оттаивания, а также отрицательных температур учитывают коэффициентом условий работы бетона γb4 ≤ 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40оС и выше, принимают коэффициент γb4 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно указаниям СП «Бетонные и железобетонные конструкции, подвергающиеся технологическим и климатическим температурно-влажностным воздействиям».
Наступление предельных состояний второй группы не столь опасно как первой, так как это обычно не влечёт за собой аварий, обрушений, жертв, катастроф. Поэтому расчётные сопротивления бетона для расчёта конструкций по предельным состояниям второй группы устанавливают при = = 1, т.е. принимают их равными нормативным значениям
(2.10)
Как правило, здесь и = 1.
infopedia.su
Нормативные и расчетные характеристики бетона и арматуры
12 мая 2016 г.
Основными показателями прочности и деформативности бетона являются нормативные значения их прочностных и деформационных характеристик.
Основными прочностными характеристиками бетона являются нормативные значения:
- сопротивления бетона осевому сжатию Rb,n;
- сопротивления бетона осевому растяжению Rbt,n.
Нормативное значение сопротивления бетона осевому сжатию (призменная прочность) следует устанавливать в зависимости от нормативного значения прочности образцов-кубов (нормативная кубиковая прочность) для соответствующего вида бетона и контролируемого на производстве.
Нормативное значение сопротивления бетона осевому растяжению при назначении класса бетона по прочности на сжатие следует устанавливать в зависимости от нормативного значения прочности на сжатие образцов-кубов для соответствующего вида бетона и контролируемого на производстве.
Соотношение между нормативными значениями призменной и кубиковой прочностями бетона на сжатие, а также соотношение между нормативными значениями прочности бетона на растяжение и прочности бетона на сжатие для соответствующего вида бетона следует устанавливать на основе стандартных испытаний.
При назначении класса бетона по прочности на осевое растяжение нормативное значение сопротивления бетона осевому растяжению принимают равным числовой характеристике класса бетона по прочности на осевое растяжение, контролируемой на производстве.
Основными деформационными характеристиками бетона являются нормативные значения:
- предельных относительных деформаций бетона при осевом сжатии и растяжении εbo,n и εbto,n ;
- начального модуля упругости бетона Еb,n.
- Кроме того, устанавливают следующие деформационные характеристики:
- начальный коэффициент поперечной деформации бетона v;
- модуль сдвига бетона G;
- коэффициент температурной деформации бетона αbt;
- относительные деформации ползучести бетона εсг (или соответствующие им характеристику ползучести φb,cr меру ползучести Cb,cr;
- относительные деформации усадки бетона εshr.
Нормативные значения деформационных характеристик бетона следует устанавливать в зависимости от вида бетона, класса бетона по прочности на сжатие, марки бетона по средней плотности, а также в зависимости от технологических параметров бетона, если они известны (состава и характеристики бетонной смеси, способов твердения бетона и других параметров).
В качестве обобщенной характеристики механических свойств бетона при одноосном напряженном состоянии следует принимать нормативную диаграмму состояния (деформирования) бетона, устанавливающую связь между напряжениями σb,n (σbt,n) и продольными относительными деформациями εb,n (εbt,n) сжатого (растянутого) бетона при кратковременном действии однократно приложенной нагрузки (согласно стандартным испытаниям) вплоть до их нормативных значений.
Основными расчетными прочностными характеристиками бетона, используемыми в расчете, являются расчетные значения сопротивления бетона:
- осевому сжатию Rb;
- осевому растяжению Rbt.
Расчетные значения прочностных характеристик бетона следует определять делением нормативных значений сопротивления бетона осевому сжатию и растяжению на соответствующие коэффициенты надежности по бетону при сжатии и растяжении.
Значения коэффициентов надежности следует принимать в зависимости от вида бетона, расчетной характеристики бетона, рассматриваемого предельного состояния, но не менее:
- для коэффициента надежности по бетону при сжатии:
- 1.3 - для предельных состояний первой группы;
- 1.0 - для предельных состояний второй группы;
- для коэффициента надежности по бетону при растяжении:
- 1,5 - для предельных состояний первой группы при назначении класса бетона по прочности на сжатие;
- 1.3 - то же, при назначении класса бетона по прочности на осевое растяжение;
- 1.0 - для предельных состояний второй группы.
Расчетные значения основных деформационных характеристик бетона для предельных состояний первой и второй групп следует принимать равными их нормативным значениям.
Влияние характера нагрузки, окружающей среды, напряженного состояния бетона, конструктивных особенностей элемента и других факторов, не отражаемых непосредственно в расчетах, следует учитывать в расчетных прочностных и деформационных характеристиках бетона коэффициентами условий работы бетона γbi.
Расчетные диаграммы состояния (деформирования) бетона следует определять путем замены нормативных значений параметров диаграмм на их соответствующие расчетные значения.
Значения прочностных характеристик бетона при плоском (двухосном) или объемном (трехосном) напряженном состоянии следует определять с учетом вида и класса бетона из критерия, выражающего связь между предельными значениями напряжений, действующих в двух или трех взаимно перпендикулярных направлениях.
Деформации бетона следует определять с учетом плоского или объемного напряженных состояний.
Характеристики бетона — матрицы в дисперсно-армированных конструкциях следует принимать как для бетонных и железобетонных конструкций.
Характеристики фибробетона в фибробетонных конструкциях следует устанавливать в зависимости от характеристик бетона, относительного содержания, формы, размеров и расположения фибр в бетоне, ее сцепления с бетоном и физико-механических свойств, а также в зависимости от размеров элемента или конструкции.
Основными показателями прочности и деформативности арматуры являются нормативные значения их прочностных и деформационных характеристик.
Основной прочностной характеристикой арматуры при растяжении (сжатии) является нормативное значение сопротивления Rs,n, равное значению физического предела текучести или условного, соответствующего остаточному удлинению (укорочению), равному 0,2%. Кроме того, нормативные значения сопротивления арматуры при сжатии ограничивают значениями, отвечающими деформациям, равным предельным относительным деформациям укорочения бетона, окружающего рассматриваемую сжатую арматуру.
Основными деформационными характеристиками арматуры являются нормативные значения:
- относительных деформаций удлинения арматуры εs0,n при достижении напряжениями нормативных значений Rs,n;
- модуля упругости арматуры Es,n.
Для арматуры с физическим пределом текучести нормативные значения относительной деформации удлинения арматуры εs0,n определяют как упругие относительные деформации при нормативных значениях сопротивления арматуры и ее модуля упругости.
Для арматуры с условным пределом текучести нормативные значения относительной деформации удлинения арматуры εs0,n определяют как сумму остаточного удлинения арматуры, равного 0,2%, и упругих относительных деформаций при напряжении, равном условному пределу текучести.
Для сжатой арматуры нормативные значения относительной деформации укорочения принимают такими же, как при растяжении, за исключением специально оговоренных случаев, но не более предельных относительных деформаций укорочения бетона.
Нормативные значения модуля упругости арматуры при сжатии и растяжении принимают одинаковыми и устанавливают для соответствующих видов и классов арматуры.
В качестве обобщенной характеристики механических свойств арматуры следует принимать нормативную диаграмму состояния (деформирования) арматуры, устанавливающую связь между напряжениями σs,n и относительными деформациями εs,n арматуры при кратковременном действии однократно приложенной нагрузки (согласно стандартным испытаниям) вплоть до достижения их установленных нормативных значений.
Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми, за исключением случаев, когда рассматривается работа арматуры, в которой ранее были неупругие деформации противоположного знака.
Характер диаграммы состояния арматуры устанавливают в зависимости от вида арматуры.
Расчетные значения сопротивления арматуры Rs определяют делением нормативных значений сопротивления арматуры на коэффициент надежности по арматуре.
Значения коэффициента надежности следует принимать в зависимости от класса арматуры и рассматриваемого предельного состояния, но не менее:
- при расчете по предельным состояниям первой группы - 1,1;
- при расчете по предельным состояниям второй группы - 1,0.
Расчетные значения модуля упругости арматуры Es принимают равными их нормативным значениям.
Влияние характера нагрузки, окружающей среды, напряженного состояния арматуры, технологических факторов и других условий работы, не отражаемых непосредственно в расчетах, следует учитывать в расчетных прочностных и деформационных характеристиках арматуры коэффициентами условий работы арматуры γsi.
Расчетные диаграммы состояния арматуры следует определять путем замены нормативных значений параметров диаграмм на их соответствующие расчетные значения.
ros-pipe.ru
Сопротивление бетона осевому сжатию нормативное
Сопротивление бетона осевому сжатию нормативное fck — сопротивление осевому сжатию призм или цилиндров, определенное с учетом статистической изменчивости при обеспеченности 0,95, которое допускается принимать равным fck= 0,8fc,Gcube.
[СНБ 5.03.01-02]
Рубрика термина: Свойства бетона
Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование
Источник: Энциклопедия терминов, определений и пояснений строительных материалов
Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.
construction_materials.academic.ru
Нормативные и расчетные сопротивления материалов В расчете по методу предельных состояний надежность конструкции обеспечивается за счет учета возможных отклонений как действительных нагрузок, так и характеристик материалов от среднестатистических значений в неблагоприятную сторону. Значения усилий Q, так же как и несущей способности Ф, зависят от изменчивости указанных факторов и статистически подчиняются закону нормального (гауссового) распределения (рис. 3.4). Выполнение условия (3.1) должно гарантировать несущую способность конструкций с уровнем надежности не менее 99,7 %. Таким образом, нормативные сопротивления материалов наряду с нормативными нагрузками являются определяющими величинами в расчете по методу предельных состояний. Нормативное сопротивление Rn это установленное нормами предельное значение напряжений в материале. Оно служит основной характеристикой сопротивления материалов силовым воздействиям и обычно равно контрольной характеристике в соответствии с ГОСТами на материалы. Нормами установлены и другие нормативные характеристики материалов (плотность, модуль упругости, коэффициенты трения, сцепления ползучести. усадки и др.). таблица 3.3.
Нормативное сопротивление бетона принимают в виде двух величин: временное сопротивление призм осевому сжатию (нормативная призменная прочность) и временное сопротивление осевому растяжению Нормативные сопротивления бетона (с округлением) в зависимости от класса бетона по прочности на сжатие даны в табл. 3.3. Величину R определяют различными способами в зависимости от того, как контролируется прочность бетона. В тех случаях, когда прочность бетона на растяжение не контролируется, принимают косвенным путем - в зависимости от класса бетона по прочности на сжатие согласно табл. 3.3. Если же осуществляют непосредственный контроль класса бетона по прочности на осевое растяжение, то нормативное сопротивление бетона осевому растяжению принимают равным его гарантированной прочности (классу) на осовое растяжение. Таблица 3.4.
Нормативные сопротивления арматуры с учетом разброса прочности принимают равными наименьшему (с вероятностью 0,95) контролируемому значению предела текучести физического или же условного. Исключение составляет обыкновенная (не высокопрочная) арматурная проволока класса В-II, для которой нормативное сопротивление R принимают равным наименьшему (с вероятностью 0,95) контролируемому значению напряжения, соответствующему 75% от временного сопротивления разрыву. Нормативные сопротивления арматуры приведены в табл. 3.4. Расчетные сопротивления — результат деления нормативных сопротивлений на коэффициенты надежности: по бетону при сжатии (растяжении) или по арматуре. Назначая эти коэффициенты, учитывают не только разброс значений прочности, но и другие факторы, влияющие на надежность конструкции, которые с трудом поддаются статистическому определению. Расчетные сопротивления бетона классов В50 ..В60 дополнительно умножают на коэффициенты, равные 0,90...0,95, учитывающие особенность высокопрочного бетона - его пониженную ползучесть. В табл. 3.5 приведены расчетные сопротивления тяжелого бетона, полученные подобным способом (с округлением). В зависимости от класса арматуры принимают коэффициенты надежности по арматуре V, 1,05..1,20. Расчетные сопротивления арматуры R растяжению даны в табл. 3.6. При сжатии расчетные сопротивления арматуры в расчете но I группе предельных состояний (кроме класса А-IIIв) принимают равными расчетным сопротивлениям арматуры R при растяжении, но не более 400 МПа. Таблица 3.5.
Таблица 3.6.
Таблица 3.7.
Таблица 3.8
Нормативные и расчётные сопротивления бетона При проектировании нормативное сопротивление бетона принимается численно равным прочности бетона, соответствующей его классу. Нормативное сопротивление бетонных призм осевому сжатию Rb,n(призменная прочность) определяется по нормативному значению кубиковой прочности с учетом зависимости, связывающей призменную и кубиковую прочность. Нормативные сопротивления бетона осевому растяжению Rbt,nв случаях, когда прочность бетона на растяжение не контролируется, определяются по нормативному значению кубиковой прочности с учетом зависимости , связывающей прочность на растяжение с прочностью на сжатие. Если же прочность бетона на растяжение контролируется непосредственным испытанием образцов на производстве, то нормативное сопротивление осевому растяжению принимается равным Rbt,n=Rbt,m(1-1,64ν) и характеризует класс бетона по прочности на растяжение. Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt определяют делением нормативных сопротивлений на соответствующие коэффициенты надежности бетона при сжатии γbcили γbt при растяжении :Rb =Rb,n/γbc , Rbt = Rbt,n/ γbt Для тяжелого бетона γbс= 1,3; γbе=1,5. Эти коэффициенты учитывают возможность понижения фактической прочности по сравнению с нормативной вследствие отличия прочности бетона в реальных конструкциях от прочности в образцах и ряд других факторов, зависящих от условий изготовления и эксплуатации конструкций. Расчетные сопротивления бетона для предельных состояний 2-ой группы Rb,serи Rbt,ser определяются при коэфффициентах надежности γbс = γbt=1, т.е. принимаются равными нормативным сопротивлениям. Это объясняется тем, что наступление предельных состояний II группы менее опасно, чем I группы, поскольку оно, как правило, не приводит к обрушению сооружений и их элементов. При расчете бетонных и железобетонных конструкций расчетные сопротивления бетона в необходимых случаях умножают на коэффициенты условий работы γbi, учитывающие: длительность действия и повторяемость нагрузки, условия изготовления, характер работы конструкции и т. п. Например, с целью учета снижения прочности бетона, имеющего место при длительной нагрузке, вводят коэффициент γb2= 0,85...0,9, при учёте нагрузок малой длительности γb2 = 1,1 Нормативные и расчетные сопротивления арматуры. Нормативные сопротивления арматуры принимают равными наименьшим контролируемым значениям для стержневой арматуры, высокопрочной проволоки и арматурных канатов — пределу текучести, физическому (σy, или условному σ0,02; для обыкновенной арматурной проволоки — напряжению, составляющему 0,75 от временного сопротивления разрыву, Значения нормативных сопротивлений Rsn принимают в соответствии с действующими стандартами на арматурные стали, как и для бетона, с надежностью 0,95 .Расчетные сопротивления арматуры растяжению Rs и Rs.ser для предельных состояний I и II группы определяются делением нормативных сопротивлений на соответствующие коэффициенты надежности по арматуре γs:Rs= Rsn / γs Коэффициент надежности устанавливают, чтобы исключить возможность разрушения элементов в случае чрезмерного сближения Rs и Rsn Он учитывает изменчивость площади поперечного сечения стержней, раннее развитие пластических деформаций арматуры и т.п. Его значение для стержневой арматуры классов А-I, А-П составляет 1,05; классов А-III — 1,07...1,1; классов А-1V, А-V—1,15; классов А-VI —1,2; для проволочной арматуры классов Вр-I, В-I — 1,1; классов В-II, Вр-II, К-7, К-19— 1,2. При расчете по предельным состояниям II группы значение коэффициента надежности для всех видов арматуры принято равным единице, т.е. расчетные сопротивления численно равны нормативным. При назначении расчетных сопротивлений арматуры сжатию Rsc учитываются не только свойства стали, но и предельная сжимаемость бетона. Принимая ε bcu=2*10-3, модуль упругости стали Es=2*10 -5 МПа, можно получить наибольшее напряжение, достигаемое в арматуре перед разрушением бетона из условия совместных деформаций бетона и арматуры σ cs= ε bcuEs Согласно нормам расчетное сопротивление арматуры сжатию Rsv принимают равным Rs, если оно не превышает 400 МПа; для арматуры с более высоким значением Rs, расчетное сопротивление принимают 400 МПа (или 330 МПа при расчете в стадии обжатия). При длительном действии нагрузки ползучесть бетона приводит к повышению напряжения сжатия в арматуре. Поэтому если расчетное сопротивление бетона принимают с учетом коэффициента условий работы γb2=0,85...0,9 (т.е. с учетом продолжительного действия нагрузки), то допускается при соблюдении соответствующих конструктивных требований повышать значение Rзс до 450 МПа для сталей класса А- IV и до 500 МПа для сталей классов Ат-IV и выше. При расчетах конструкций по I группе предельных состояний расчетные сопротивления арматуры в необходимых случаях умножаются на коэффициенты условий работы γsi , учитывающие неравномерность распределения напряжений в сечении, наличие сварных соединений, многократное действие нагрузки и др. Например, работа высокопрочной арматуры при напряжениях выше условного предела текучести учитывается коэффициентом условий работы у8б, величина которого зависит от класса арматуры и изменяется от 1,1 до 1,2
|
lektsia.com
Нормативные и расчётные сопротивления бетона - интересное
Нормативные и расчётные сопротивления бетона
С точки зрения математической статистики прочность бетона или арматуры является величиной случайной, колеблющейся в определённых пределах.
Прочностные характеристики бетона в силу существенной неоднородности его структуры обладают значительной изменчивостью. За нормативное сопротивление бетона осевому сжатию принимают предел прочности осевому сжатию бетонных призм размерами 150?150?600 мм с обеспеченностью 0,95. Эта характеристика контролируется путём проведения испытаний.
Теоретическая кривая плотности распределения прочности бетона при испытании большого количества образцов обычно представляет собой кривую, соответствующую нормальному закону распределения случайных величин по Гауссу (рис. 33).
Рис. 33. К установлению значений нормативных и расчётных сопротивлений бетона при сжатии
Под обеспеченностью понимают вероятность попадания случайных величин, выражающих прочность бетона, в интервал от до ?. Таким образом, на рис. 33 обеспеченность, равная 0,95, выразится заштрихованной площадью, которая определяется как
Зная значение ? ,можно назначить такое значение . частота появления которого была бы заранее задана
где 1,64 – показатель надёжности, соответствующий обеспеченности 95%; =0,135 – средний коэффициент вариации призменной прочности бетона, принятый по стране.
Если прочность бетона на осевое сжатие контролируется лишь на образцах в форме кубов, то определяют в зависимости от класса бетона по прочности на осевое сжатие В по формуле:
При отсутствии контроля класса бетона по прочности на осевое растяжение, когда Bt не определяется путём проведения испытаний, для определения нормативного сопротивления бетона осевому растяжению рекомендуется формула:
Расчётное сопротивление бетона осевому сжатию для расчёта по предельным состояниям первой группы получают по формуле:
где = 1,3 – коэффициент надёжности по бетону при сжатии.
Это расчётное сопротивление соотносится со средней призменной прочностью, полученной при испытании призм до разрушения, как:
Аналогично определяется расчётное сопротивление бетона осевому растяжению для расчёта по предельным состояниям первой группы
где – коэффициент надёжности по бетону при растяжении; = 1,3 – при систематическом контроле прочности бетона при осевом растяжении; = 1,5 – при отсутствии такового.
Численные значения расчётных сопротивлений и для различных классов бетона даны в табл. 5.1 и 5.2 СП 52-101-2003.
Расчётные сопротивления бетона при расчёте по предельным состояниям первой группы назначены в нормах с высокой обеспеченностью равной 0,99865.
В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы (gbi ), учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.):
а) gb1 – для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений Rb и Rbt и учитывающий влияние длительности действия статической нагрузки:
gb1 = 1,0 – при непродолжительном (кратковременном) действии нагрузки;
gb1 = 0,9 – при продолжительном (длительном) действии нагрузки;
б) gb2 – для бетонных конструкций, вводимый к расчетным значениям сопротивления Rb и учитывающий характер разрушения таких конструкций. gb2 = 0,9;
в) gb3 – для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона Rb. gb3 = 0,85.
Влияние попеременного замораживания и оттаивания, а также отрицательных температур учитывают коэффициентом условий работы бетона ?b4 ? 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40 о С и выше, принимают коэффициент ?b4 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно указаниям СП «Бетонные и железобетонные конструкции, подвергающиеся технологическим и климатическим температурно-влажностным воздействиям».
Наступление предельных состояний второй группы не столь опасно как первой, так как это обычно не влечёт за собой аварий, обрушений, жертв, катастроф. Поэтому расчётные сопротивления бетона для расчёта конструкций по предельным состояниям второй группы устанавливают при = = 1, т.е. принимают их равными нормативным значениям
Как правило, здесь и = 1.
Рекомендуем ознакомится: http://studopedia.ru
fix-builder.ru