Модуль упругости бетона: виды, классификация. От чего зависит. Модуль упругости железобетона
Модуль упругости бетона
СП 63.13330.2012
6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.
При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:
где φb,cr— коэффициент ползучести бетона, принимаемый согласно 6.1.16.
Таблица 6.11
Бетон | Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие | |||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | в10 | В12,5 | B15 | B20 | B25 | в30 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Тяжелый | — | — | — | 9,5 | 13,0 | 16,0 | 19,0 | 21,5 | 24,0 | 27,5 | 30,0 | 32,5 | 34,5 | 36,0 | 37,0 | 38,0 | 39,0 | 39,5 | 41,0 | 42,0 | 42,5 | 43 |
Мелкозернистый групп: | ||||||||||||||||||||||
А — естественного твердения | — | — | — | 7,0 | 10 | 13,5 | 15,5 | 17,5 | 19,5 | 22,0 | 24,0 | 26,0 | 27,5 | 28,5 | — | — | — | — | — | — | — | — |
Б — автоклавного твердения | — | — | — | — | — | — | — | — | 16,5 | 18,0 | 19,5 | 21,0 | 22,0 | 23,0 | 23,5 | 24,0 | 24,5 | 25,0 | — | — | — | — |
Легкий и порисованный марки по средней плотности: | ||||||||||||||||||||||
D800 | — | — | 4,0 | 4,5 | 5,0 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D1000 | — | — | 5,0 | 5,5 | 6,3 | 7,2 | 8,0 | 8,4 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D1200 | — | — | 6,0 | 6,7 | 7,6 | 8,7 | 9,5 | 10,0 | 10,5 | — | — | — | — | — | — | — | — | — | — | — | — | — |
D1400 | — | — | 7,0 | 7,8 | 8,8 | 10,0 | 11,0 | 11,7 | 12,5 | 13,5 | 14,5 | 15,5 | — | — | — | — | — | — | — | — | — | — |
D1600 | — | — | 9,0 | 10,0 | 11,5 | 12,5 | 13,2 | 14,0 | 15,5 | 16,5 | 17,5 | 18,0 | — | — | — | — | — | — | — | — | — | |
D1800 | — | — | — | — | 11,2 | 13,0 | 14,0 | 14,7 | 15,5 | 17,0 | 18,5 | 19,5 | 20,5 | 21,0 | — | — | — | — | — | — | — | — |
D2000 | — | — | — | — | — | 14,5 | 16,0 | 17,0 | 18,0 | 19,5 | 21,0 | 22,0 | 23,0 | 23,5 | — | — | — | — | — | — | — | — |
Ячеистый автоклавного твердения марки по средней плотности: | ||||||||||||||||||||||
D500 | 1,4 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D600 | 1,7 | 1,8 | 2,1 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D700 | 1,9 | 2,2 | 2,5 | 2,9 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D800 | — | — | 2,9 | 3,4 | 4,0 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D900 | — | — | — | 3,8 | 4,5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D1000 | — | — | — | — | 5,0 | 6,0 | 7,0 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | |
D1100 | — | — | — | — | — | 6,8 | 7,9 | 8,3 | 8,6 | — | — | — | — | — | — | — | — | — | — | — | — | — |
D1200 | — | — | — | — | — | — | 8,4 | 8,8 | 9,3 | — | — | — | — | — | — | — | — | — | — | — | — | — |
Примечания 1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89. 2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции. 3 Для ячеистого бетона неавтоклавного твердения значения Еbпринимают как для бетона автоклавного твердения с умножением на коэффициент 0,8. 4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В. |
6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.
Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.
Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200)2.
Таблица 6.12
Относительная влажность воздуха окружающей среды, % | Значения коэффициента ползучести бетона φb,crпри классе тяжелого бетона на сжатие | ||||||||||
В10 | В15 | В20 | В25 | взо | В35 | В40 | В45 | В50 | В55 | В60 — В100 | |
Выше 75 | 2,8 | 2,4 | 2,0 | 1,8 | 1,6 | 1,5 | 1,3 | 1,2 | 1,1 | 1,0 | |
40 — 75 | 3,9 | 3,4 | 2,8 | 2,5 | 2,3 | 2,1 | 1,9 | 1,8 | 1,6 | 1,5 | 1,4 |
Ниже 40 | 5,6 | 4,8 | 4,0 | 3,6 | 3,2 | 3,0 | 2,8 | 2,6 | 2,4 | 2,2 | 2,0 |
Примечание — Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства. |
saitinpro.ru
Расчётные сопротивления и модули упругости тяжёлого бетона, мПа
Таблица 2
Характеристики бетона | КЛАСС БЕТОНА | ||||||||
В7,5 | В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | |
Для предельных состояний 1-й группы | |||||||||
Сжатие осевое (призменная прочность) Rb | 4,5 | 6,0 | 7,5 | 8,5 | 11,5 | 14,5 | 17,0 | 19,5 | 22,0 |
Растяжение осевое Rbt | 0,48 | 0,57 | 0,66 | 0,75 | 0,90 | 1,05 | 1,20 | 1,30 | 1,40 |
Для предельных состояний 2-й группы | |||||||||
Сжатие осевое Rb, ser | 5,5 | 7,5 | 9,5 | 11,0 | 15,0 | 18,5 | 22,0 | 25,5 | 29,0 |
Растяжение осевое Rbt, ser | 0,70 | 0,85 | 1,00 | 1,15 | 1,30 | 1,60 | 1,80 | 1,95 | 2,10 |
Начальный модуль упругости тяжёлого бетона обычного твердения Eb | 16000 | 18000 | 21000 | 23000 | 27000 | 30000 | 32500 | | 36000 |
Начальный модуль упругости тяжёлого бетона подвергнутого тепловой обработке при атмосферном давлении | 14500 | 16000 | 19000 | 20500 | 24000 | 27000 | 29000 | 31000 | 32500 |
Примечание. Расчётные сопротивления бетона для предельных состояний 2-й группы равны нормативным: Rb,ser =Rb,n; Rbt,ser =R bt, n.
Расчётные сопротивления и модули упругости некоторых арматурных сталей, мПа
Таблица 3
КЛАСС АРМАТУРЫ (обозначение по ДСТУ 3760-98) | Расчётные сопротивления | Модуль упругости Es | |||
для расчёта по предельным состояниям 1-й группы | для расчёта по предельным состояниям 2-й группы Rs,ser | ||||
растяжение | сжатие Rsc | ||||
Rs | Rsw | ||||
1 А240С | 2 | 3 | 4 | 5 | 6 |
| 225 | 175 | 225 | 235 | 2,1·105 |
А300С | 280 | 225 | 280 | 295 | 2,1·105 |
А400С 6…8 мм | 355 | 285 | 355 | 390 | 2,0·105 |
А400С 10…40мм | 365 | 290 | 365 | 365 | 2,0·105 |
А600С | 510 | 405 | 450 | 590 | 1,9·105 |
BpI 3 мм | 375 | 270 | 375 | 410 | 1,7·105 |
BpI 4 мм | 365 | 265 | 365 | 405 | 1,7·105 |
BpI 5 мм | 360 | 260 | 360 | 395 | 1,7·105 |
Примечание. Расчётные сопротивления стали для предельных состояний 2-й группы равны нормативным: Rs,ser =Rs,n.
studfiles.net
виды, классификация. От чего зависит
Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.
Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.
Испытание на растяжение
Классификация
Виды и таблицы
Заливка плитного фундамента
- Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
- Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Таблица модулей упругости бетона с учётом СНИП 2.03.01-84
Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.
Рекомендация. При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция.
Модуль упругости — от чего он зависит
Бетонные арки. Фото
В первую очередь, упругость зависит от характеристик наполнителя, к тому же, если отобразить такое влияние на графической схеме, то мы увидим прямолинейное возрастание. Получается, что чем выше значение модуля, тем больше упругость раствора, где самые высокие показатели у тяжёлых бетонов, так как там используются очень плотные наполнители — щебень и гравий. Повышение таких характеристик связано с будущей возможностью нагрузки на ту или иную конструкцию, а также от того, с какой периодичностью будет осуществляться это воздействие (узнайте здесь, как производится крепление лаг к бетонному полу).
Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.
Автоклавная обработка
Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.
Приготовление бетона своими руками при строительстве дома
В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (читайте также статью «Облицовка газобетона: способы и их особенности»).
Примечание. Каким бы ни был модуль упругости, в любом случае сталь будет крепче, нежели бетон, поэтому, наличие армирующего каркаса значительно увеличивает такие показатели. Плотность армирования и сечение прута определяется по ГОСТ 24452-80.
Заключение
В заключение следует сказать, что резка железобетона алмазными кругами или алмазное бурение отверстий в бетоне напрямую зависят от его модуля упругости, так как от этого возрастает или падает сопротивляемость материала. Всё дело в том, что победитовые накладки на сверле или буре не справятся с гравием или даже со щебнем крупной фракции, поэтому в этих случаях целесообразнее использовать инструмент с алмазным напылением (узнайте также как сделать крепеж для газобетона).
rusbetonplus.ru
1.1.7. Модуль деформаций бетона
Начальный модуль упругости бетона при сжатии () соответствует лишь упругим деформациям, возникающим при мгновенном загружении или при напряжениях . Он определяется, в соответствии с законом Гука, как тангенс угла наклона прямой упругих деформаций к оси абсцисс (рис. 16), т.е.:
(1.18)
где ρ = 1 МПа – масштабно-размерный коэффициет.
Рис. 16. Схема для определения модуля деформаций бетона:
1 – упругие деформации; 2 – секущая; 3 – касательная; 4 – полные деформации
Обычно определяется из специальных опытов на призмах при низком уровне напряжений (), когда бетон можно рассматривать как упругий материал, или, если известна кубиковая прочность бетона, то по различным эмпирическим формулам. Так для тяжёлого бетона естественного твердения
. (1.19)
Значение при тепловой обработке бетона снижается на 10%, при автоклавной – на 25%.
При действии на бетон нагрузки, при которой , хотя бы в течение нескольких минут, в связи с развитием пластических деформаций (включая ползучесть) модуль полных деформаций бетона становится величиной переменной.
Для расчёта железобетонных конструкций пользуются средним модулем деформаций или модулем упругопластичности бетона, представляющим собой тангенс угла наклона секущей, проведённой через начало координат и точку на кривой с заданным напряжением, к оси абсцисс, т.е.
(1.20)
Зависимость между и можно установить, если выразить по (1.18) и (1.20) одно и то же напряжение в бетоне через упругие деформации и полные деформации
(1.21)
где v = – коэффициент упругопластичности бетона. Значение v при сжатии изменяется от 1 (при упругой работе бетона) до 0,15 (в момент, предшествующий разрушению бетона при очень длительном загружении).
Начальный модуль упругости бетона при растяжении по абсолютной величине принимается равным , т.е. , а
(1.22)
где vt = 0,15 – значение коэффициента упругопластичности бетона при растяжении в момент, предшествующий разрушению.
Значения модуля сдвига бетона G принимают по установленной в теории упругости зависимости
Подставив в неё начальный коэффициент поперечной деформации бетона ν = 0,2, получим .
1.2. Арматура для железобетонных конструкций
1.2.1. Назначение арматуры и требования к ней
Под арматурой понимают отдельные стержни или целые каркасы, которые располагаются в массе бетона в соответствии со статической схемой работы конструкции.
Арматура в железобетонных конструкциях используется преимущественно для восприятия растягивающих усилий. Но иногда арматуру применяют и для усиления сжатого бетона (например, в колоннах), а также для восприятия температурных и усадочных напряжений.
Арматура для железобетонных конструкций должна удовлетворять следующим требованиям:
studfiles.net
Модуль упругости бетона на растяжение и сжатие
Данное понятие известно в основном специалистам. Для «самодеятельного» строителя, частного застройщика это словосочетание мало о чем говорит. Но долговечность той или иной постройки напрямую зависит от него.
Сам бетон является твердым материалом. И, тем не менее, под влиянием различных внешних сил он частично деформируется. Именно поэтому различают 2 показателя его прочности – на растяжение и на сжатие, хотя ориентируются в большей степени на последний. Следовательно, и модули упругости также должны быть соответственно рассчитаны на эти разносторонние воздействия.
Но на практике они принимаются равными и свидетельствуют о способности бетона временно деформироваться под воздействием повышенных нагрузок, при этом не подвергаясь необратимым изменениям – разрушению структуры, появлению трещин, сколов и тому подобное. Это особенно важно знать, когда конструкция подвергается различным прогибам (например, ж/б сооружения арочного типа, перекрытия). В отличие от многих других строительных материалов бетон под влиянием нагрузки (в известных пределах) действует как пружина.
Рассматриваемый показатель определяется экспериментальным путем на основе испытаний образцов материалов. Обозначается символом «E» и имеет второе название – «модуль Юнга». Различают начальный и приведенный модуль упругости (Eb и Eb1 соответственно). Для рядового пользователя все эти вычисления и используемые при этом формулы практического значения не имеют, так как во всех нюансах сможет разобраться только профильный специалист.
Нужно лишь знать, что оказывает влияние на данную характеристику материала, а также о существовании таблиц, которыми при необходимости можно воспользоваться.
От чего зависит модуль упругости
1. Непосредственное влияние оказывают характеристики наполнителя, причем эта зависимость – практически прямолинейная (если отобразить ее графически). Для легких бетонов значение модуля ниже, чем тот же показатель у «тяжелых» аналогов с крупными гранулами (щебня, гравия).
2. Класс бетона. Для определения существует специальная таблица. Частный застройщик на практике использует ограниченный ассортимент подобной продукции, поэтому нет смысла приводить ее в полном виде. Вот некоторые данные по прочности и модулю, из которых видно, что они имеют прямо пропорциональную зависимость, которая не изменяется при температурах до 230 0С. Следовательно, практически никогда.
- В10 соответствует 19;
- В 15 – 24;
- В20 – 27,5;
- В25 – 30;
- В30 – 32,5.
Это позволяет «управлять» таким свойством материала, как упругость, причем для одной и той же марки продукции. Такая характеристика принимается во внимание в зависимости от того, какой элемент конструкции будет монтироваться. Например, слабо или сильно нагруженный, с какой периодичностью и длительностью будет действовать дополнительный вес.
3. Возраст бетона. Наблюдается тенденция увеличение численного показателя модуля упругости с течением времени. Поэтому при определении значения в конкретный период пользуются специальными таблицами, где отражены начальные показатели, которые умножаются на поправочные коэффициенты.
4. Технология обработки материалов. Есть разница, как отвердевал бетон – естественным путем, при термической обработке без использования закрытых камер или «прошел» через автоклав.
5. Продолжительность воздействия нагрузки. Для определения данной величины начальный модуль упругости (взятый из таблицы), умножается на соответствующий коэффициент. Он равен 0,85 для бетонов мелкозернистых, легких (если заполнитель мелкий) и тяжелых. Для легких (с пористым заполнителем) и поризованных бетонов коэффициент равняется 0,7.
Перед тем, как рассмотреть иные факторы, влияющие на рассматриваемую характеристику, стоит остановиться на таком показателе, как ползучесть бетона. От нее зависит степень деформации материала. Дело в том, что при кратковременном воздействии (причем в определенных пределах) после снятия нагрузки материал принимает первоначальную форму.
Если воздействие не прекращается, то речь идет уже о пластичной деформации, которая, как правило, имеет необратимый характер. Не стоит вдаваться во все нюансы, так как порой разделить оба вида деформации крайне сложно. Достаточно указать, что пластичная (то есть дальнейшее изменение формы) вызывается «ползучестью» бетона. Она учитывается при длительном воздействии. Коэффициент ползучести обозначается символом «φb,cr»
6. Влажность воздуха. Существует зависимость между ней и φb,cr. Это также определяется по таблицам. Кроме того, учитываются и такие факторы, как температура и радиация (интенсивность излучения).
7. Наличие армирующего каркаса. Понятно, что металл деформируется под нагрузкой не в такой степени, как бетон.
Для тех читателей, которые захотят более глубоко вникнуть в этот вопрос, укажем Государственный Стандарт № 24452 от 1980 года, в котором описаны, в частности, и методы определения данной характеристики бетонов.
aquagroup.ru
Модуль упругости бетона В15, В20, В25, В30
Определение упругости и единицы измерения
Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно. Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.
Нормативные сведения также включают данные о:
- классе материала,
- его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
- технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).
В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения. Таблица утверждена СНиП и составлена на основе результатов опытных исследований.
Таблица начальных модулей упругости E (МПа*10-3) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками
Классы по прочности на сжатие |
В3,5 |
В5 |
В7,5 |
В10 |
В12,5 |
В15 |
В20 |
В25 |
В30 |
В35 |
В40 |
В45 |
В50 |
В55 |
В60 |
Характеристики бетона |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Тяжелые бетоны |
|||||||||||||||
Естественное твердение |
9,5 |
13 |
16 |
18 |
21 |
23 |
27 |
30 |
32,5 |
34,5 |
36 |
37,5 |
39 |
39,5 |
40 |
Тепловая обработка при атмосферном давлении |
8,5 |
11,5 |
14,5 |
16 |
19 |
20,5 |
24 |
27 |
29 |
31 |
32,5 |
34 |
35 |
35,5 |
36 |
Автоклавная обработка |
7 |
10 |
12 |
13,5 |
16 |
17 |
20 |
22,5 |
24,5 |
26 |
27 |
28 |
29 |
29,5 |
30 |
Мелкозернистые |
|||||||||||||||
Естественное твердение, А-группа |
7 |
10 |
13,5 |
15,5 |
17,5 |
19,5 |
22 |
24 |
26 |
27,5 |
28,5 |
- |
- |
- |
- |
Тепловая обработка при атмосферном давлении |
6,5 |
9 |
12,5 |
14 |
15,5 |
17 |
20 |
21,5 |
23 |
- |
- |
- |
- |
- |
- |
Естественное твердение, Б-группа |
6,5 |
9 |
12,5 |
14 |
15,5 |
17 |
20 |
21,5 |
23 |
- |
- |
- |
- |
- |
- |
Автоклавная теплообработка |
5,5 |
8 |
11,5 |
13 |
14,5 |
15,5 |
17,5 |
19 |
20,5 |
- |
- |
- |
- |
- |
- |
Автоклавное твердение, В-группа |
- |
- |
- |
- |
- |
16,5 |
18 |
19,5 |
21 |
21 |
22 |
23 |
24 |
24,5 |
25 |
Легкие и поризованные |
|||||||||||||||
Марка средней плотности, D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
800 |
4,5 |
5,0 |
5,5 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1000 |
5,5 |
6,3 |
7,2 |
8 |
8,4 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1200 |
6,7 |
7,6 |
8,7 |
9,5 |
10 |
10,5 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1400 |
7,8 |
8,8 |
10 |
11 |
11,7 |
12,5 |
13,5 |
14,5 |
15,5 |
- |
- |
- |
- |
- |
- |
1600 |
9 |
10 |
11,5 |
12,5 |
13,2 |
14 |
15,5 |
16,5 |
17,5 |
18 |
- |
- |
- |
- |
- |
1800 |
- |
11,2 |
13 |
14 |
14,7 |
15,5 |
17 |
18,5 |
19,5 |
20,5 |
21 |
- |
- |
- |
- |
2000 |
- |
- |
14,5 |
16 |
17 |
18 |
19,5 |
21 |
22 |
23 |
23,5 |
- |
- |
- |
- |
Ячеистые автоклавного твердения |
|||||||||||||||
Марка средней плотности, D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
2,9 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
800 |
3,4 |
4 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
900 |
3,8 |
4,5 |
5,5 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1000 |
- |
6 |
7 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1100 |
- |
6,8 |
7,9 |
8,3 |
8,6 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1200 |
- |
|
8,4 |
8,8 |
9,3 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
От чего зависит упругость бетона
1. Состав
Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.
Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.
2. Класс
Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.
Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.
Расчет модуля упругости в лабораторных условиях
Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца. Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.
При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.
Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.
udarnik.spb.ru
Жесткостные характеристики армированного ЖБ сечения в КЭ программах
Regby 2009-05-07 14:13:00Ну а если взглянуть с другой стороны? Знать истинное НДС - перспектива заманчивая с точки зрения самоудовлетворения. т.е если проектировщик способен точно определить НДС элемента - не важно каким способом - используя Супер-Лиру или просто сходив к гадалке -
он
молодец, он может спать спокойно и всегда знает на сколько еще можно "догрузить" конструкцию чтобы она не рухнула. Давайте будем к этому стремиться и всем удачи в таком нелегком деле, но... Для проверяющих органов, да и вообще для взаимопонимания со своими коллегами разработаны СНиП-ы, в них есть требованияи
ограничения для конструкций. Одно из таких ограничений это максимальный прогиб, т.е. деформация (т.е не "то есть" - потому как это разные вещи, но давайте не будем придираться к словам).Таким
образом любому проектировщику необходимо "получать"деформации
при расчете в пределах, установленных нормативами. Вопрос в том как это сделать? Поясняю: я ставлю задачу не получить ИСТИННЫЙ результат, а получитьрезультат
по СНиП (а конкретнее согласно СП 52-101-2003). Кому то эта задача покажется не инетерсной - он стремиться "вперед к истине в высь", я то же попробуюпройтись
рядышком, просто "для себя", но все это лирика. Вопрос: возможно ли получить деформации в какой-либо программе согласно СНиП? Я предлагаюрешить
"элементарную" задачу по определению прогиба железобетонной консоли: вылетом 3 метра сечения 400х600(h)Бетон
В25Нагруженную
равномерно распределенной нагрузкой 3 т/м. (длительной) Таким образом имеем расчетныймомент
M=q*l2/2=3*9/2=13.5 т*м В меру своих скромных сил исследовав данный вопрос я пришел к выводу что я ничего не понял. Начав с того что "определил" прогиб в линейной постановке согласно СП 52-101-2003 (и пособию к нему). и... похоже что я что то делаю не так... то ли где то ошибся... то ли туплю, не знаю, но результат который я получил 1,78 мм (расчет прилагается) Другие результаты: Расчет в SCAD (с начальным модулем упругости) 1,38 мм Расчет в SCAD (с уменьшеным в 5 раз модулем упругости) 6,89 мм (Ради баловства) Расчет в SCAD (с приведенным модулем упругости) 4,67 мм Расчет в Robot (в упругой стадии) 1,4 мм Расчет в Robot (значения получаемые при "проектировании"жб
балки) 3,7 мм Расчет в Арбат (по СНиП 84*) 3,292 мм Расчет в Арбат (по СП 52-101-2003) 3,717 мм так как одновременно можно поместить только 5 вложений, буду ждать любого чужого поста чтобы выложить картинкиsoftseg.ru