Теплопроводность минплиты: виды, технические характеристики, лучшие производители минераловатных плит

Содержание

Теплопроводность минеральной ваты Isover, Ursa, Knauf, Rockwool

admin | 26.04.2017 | Утепление минеральной ватой | Комментариев нет

Содержание статьи о теплопроводности минеральной ваты

  • Минеральная вата характеристики
  • Теплопроводность утеплителей
  • Коэффициент теплопроводности минеральной ваты
  • Минеральная вата Isover характеристики теплопроводности
  • Минвата Урса характеристики теплопроводности
  • Коэффициент теплопроводности Кнауф
  • Rockwool коэффициент теплопроводности
  • Каталоги утеплителей Isover, Ursa, Knauf, Rockwool

Одной из главных характеристик минеральной ваты является ее теплопроводность. Именно этот показатель является основным при выборе теплоизоляционного материала для тех или иных целей. В данной статье рассмотрим теплопроводность минеральной ваты таких производителей, как Isover, Ursa, Knauf и Rockwool.

Минеральная вата характеристики

Минеральная вата является одним из самых качественных современных теплоизоляционных материалов. Она используется для утепления домов, жилых и нежилых зданий, оборудования и т.п. Для каждой цели используются определенные материалы с разными характеристиками.

Основные характеристики минваты:

  • размеры минваты;
  • механическая стойкость;
  • теплопроводность;
  • плотность;
  • водоотталкивающие свойства;
  • химическая стойкость;
  • толщина минеральной ваты.

Данный материал обладает хорошими эксплуатационными характеристиками, именно поэтому он настолько популярен. Чтобы знать, как выбрать минеральную вату и на что обращать внимание, советуем ознакомиться с характеристиками минеральной ваты. Эту информацию вы найдете в другой статье.

Теплопроводность утеплителей

Теплопроводность – одна из главных характеристик строительных материалов и утеплителей, в том числе и минеральной ваты. Чем ниже этот показатель, тем меньший слой утеплителя понадобится для теплоизоляции стен, крыши, пола и других строительных конструкций.

Коэффициент теплопроводности утеплителей (Вт/м °С) с необходимой толщиной слоя:

  • кирпичная кладка – 0,520/1460 мм;
  • керамзит – 0,170/869 мм;
  • стекловата – 0,044/189 мм;
  • базальтовая вата – 0,039 /167 мм;
  • пенополистирол – 0,037 /159 мм.

Коэффициент теплопроводности минеральной ваты

Коэффициент теплопроводности минеральной ваты – это одна из основных характеристик, влияющих на сферу использования материала. Теплопроводность представляет собой процесс переноса тепла от материалов с высшей температурой к материалам с меньшей температурой и наоборот.

Минеральная вата является волокнистым теплоизоляционным материалом, к которому относится каменная (базальтовая), шлаковая и стеклянная вата. Каждый из этих видов имеет свой коэффициент теплопроводности. Теплопроводность стекловаты – 0,030-0,052 Вт/м*К, теплопроводность базальтовой ваты – 0,035-0,046 Вт/м*К, для шлаковой ваты этот показатель варьируется в диапазоне 0,46-0,48 Вт/м*К. Качество теплоизоляции определяется толщиной утеплителя и его теплопроводностью. Значения теплопроводности должны соответствовать государственным нормам:

  • λ10, ГОСТ 7076-994;
  • λ25, ГОСТ 7076-99;
  • λА, СП 23-101-2004;
  • λБ, СП 23-101-2004.

Минеральная вата Isover характеристики теплопроводности

Наименование материалаВид материалаПредназначениеКоэффициент теплопроводности (Вт/мК)
ISOVER Классикрулонутепление конструкций, где теплоизоляционный материал не должен нести нагрузку0,033-0,037
ISOVER Каркас-П32плитаутепление каркасных конструкций0,032- 0,037
ISOVER Каркас-М37матутепление каркасных конструкций0,037- 0,043
ISOVER Каркас-М40-АЛматутепление каркасных конструкций0,040- 0,046
ISOVER ЗвукоЗащитаплитаутепление каркасных конструкций0,038- 0,044
ISOVER ПлавающийПолплитазвукоизоляция перегородок, подвесных потолков, стен внутри помещения0,033-0,046
ISOVER Каркас-П34плитазвукоизоляция от ударного шума при устройстве «плавающего пола»0,034-0,040
ISOVER СкатнаяКровляплитаизоляция многослойных стен зданий из мелкоштучных материалов0,037-0,043
ISOVER OL-TOP, OL-P, OL-Peплита жесткаяизоляция скатной кровли0,037-0,042
ISOVER ВентФасадплитаизоляция плоской кровли0,032-0,040
ISOVER OL-Eплита жесткаяизоляция стен с вентилируемым зазором0,034- 0,039
ISOVER ШтукатурныйФасадплита жесткаяизоляция стен с нанесением штукатурного слоя0,038- 0,043

Все утеплители из минеральной ваты производителя Isover имеют низкий коэффициент теплопроводности – в пределах от 0,032 до 0,044 Вт/мК. Благодаря этому обеспечивается отличная теплозащита и звукоизоляция. Естественно, немалую роль в этом играет и уникальная структура волокна.

Самый низкий коэффициент теплопроводности имеют плиты ISOVER Каркас-П32 – 0,032 Вт/мК. Они используются для изоляции каркасных стен. Теплопроводность ISOVER Классик – 0,041 Вт/мК, ISOVER Штукатурный Фасад – 0,038. Ниже будет приведен каталог этого и других производителей, где эта информация описана более подробно в доступной форме.

Минвата Урса характеристики теплопроводности

Наименование материалаВид материалаПредназначениеКоэффициент теплопроводности (Вт/мК)
URSA GEO М-11рулонуниверсальный материал (утепление пола, крыши, стен)0,040
URSA GEO Универсальные плитыплиты в рулоне0,036
URSA GEO Скатная крышаплиты в рулонеутепление скатных крыш0,035
URSA GEO Шумозащитаплиты в рулонеизоляция каркасных
перегородок и стен при
облицовке изнутри
0,039
URSA GEO Лайтрулонизоляция полов, перекрытий, акустических
потолков
0,044
URSA GEO М-11Фрулонизоляция стен при
облицовке изнутри, утепление полов, перекрытий, бань
0,040
URSA GLASSWOOL ФАСАДматсистемы утепления с вентилируемым воздушным зазором0,032-0,043
URSA GLASSWOOI П-15плитаутепление скатных крыш0,042
URSA М-25матизоляция конструкций сложной формы0,038

Минеральная вата Урса обладает одним из лучших показателей теплопроводности. Теплоизоляционные плиты обеспечивают надежное утепление дома. Это вызвано использованием «дышащей» волокнистой структуры и воздушных прослоек. Отдельного внимания заслуживает минвата Урса Гео, так как она производится по экологичной технологии с использованием уникальной рецептуры. Рассмотрим характеристики теплопроводности минеральной ваты компании Урса.

Самый распространенный материал данной компании – URSA GEO М-11 в рулонах. Он имеет коэффициент теплопроводности 0,040 Вт/мК. Такой же показатель в URSA GEO М-11Ф. Немного высшую теплопроводность имеют плиты URSA GEO Лайт и URSA GLASSWOOI П-15 (0,044 и 0,042 соответственно). URSA GEO Универсальные плиты и URSA GEO Скатная крыша, используемые для теплоизоляции крыши – материалы с наименьшим коэффициентом теплопроводности (0,035-0,036). Невысокий коэффициент имеют и маты URSA М-25, предназначенные для утепления конструкций сложной формы.

Коэффициент теплопроводности Кнауф

Наименование материалаВид материалаПредназначениеКоэффициент теплопроводности (Вт/мК) ?10, ?25, ?А1, ?Б2
Термо Плита 037плитаутеплитель для всего дома0,037, 0,040, 0,041, 0,043
ТЕПЛОкровля 037Aплитатеплоизоляция кровли0,037, — , 0,041, 0,043
ТЕПЛОстена 032 Аплитаутепление «под сайдинг», сборные стеновые сэндвич-панели, утепление навесных вентилируемых фасадов0. 032, — , 0.039, 0.042
ТЕПЛОрулон 040рулонтеплоизоляция полов мансардных помещений, чердачных и междуэтажных перекрытий, полов по лагам0,040, 0,044, 0,044, 0,047

Компания Кнауф выпускает материалы первого класса для теплоизоляции. Вся продукция сертифицирована и соответствует государственным и международным стандартам. Благодаря использованию уникальной технологии ECOSE компании удалось занять одно из первых мест на рынке теплоизоляционных материалов.

Коэффициент теплопроводности (Вт/мК) λ10, λ25, λА1, λБ2 для разных изделий отличается. Самый низкий показатель имеют плиты ТЕПЛОстена 032 А, предназначенные для утепление навесных вентилируемых фасадов, утепление «под сайдинг» и как слой в сборных стеновых сэндвич-панелях.

Rockwool коэффициент теплопроводности

Наименование материалаВид материалаПредназначениеКоэффициент теплопроводности (Вт/мК)
Rockminплитатепло- и звукоизоляция вентилируемых покрытий и чердаков, кровель, стен, деревянных балочных перекрытий, подвесных потолков, легких каркасных стен и перегородок, а также полов на лагах.0,039
Domrockмат0,045
Superrockплита0,035
Panelrockплитатепло- и звукоизоляция стен наружных зданий0,036
Wentirock maxплитаутепление вентилируемых фасадов0,036
Monrock maxплитаутепление всех типов плоских крыш0,039
Dachrock profплита0,045
Fasrock maxплитатепло- и звукоизоляция внешних стен системой фасадного утепления методом «легким мокрым»0,037
Fasrock Lплита0,042
Fasrockплита0,039
Stroprockплитатепло- и звукоизоляция полов на грунте и перекрытий под бетонной стяжкой0,041
Alfarockматизоляция труб и трубопроводов0,037
Rockmataмат0,036
Wired Mat и Alu Wired Matмат0,042

Использование минеральной ваты Роквул для теплоизоляции дома позволяет зимой сохранять тепло, а летом – прохладу. Плиты и маты обладают оптимальным коэффициентом теплопроводности – от 0,035 до 0,045 Вт/м К. Утеплители данного производителя широко используются в строительстве частных, общественных и производственных зданий.

Наиболее низкий коэффициент теплопроводности (0,035-0,037 Вт/м К) имеют плиты Superrock, Panelrock, Wentirock max, Fasrock max, а также маты Rockmata, Alfarock. 

Видео – краш-тест на огнестойкость минеральной ваты

Каталоги продукции и инструкции по монтажу ведущих производителей

Изовер

Каталог ISOVER ВентФасад

Каталог ISOVER Классик Плюс

Каталог ISOVER Классик

Каталог продукции ISOVER для Сауны

Каталог продукции ISOVER СкатнаяКровля

Каталог продукции ISOVER ШтукатурныйФасад

Инструкция по монтажу фасадной теплоизоляции

Каталог продукции ISOVER на основе каменного волокна

Каталог продукции ISOVER на основе стекловолокна

Утепление скатных кровель и мансард

Кнауф

Инструкция по монтажу теплоизоляции «Вентилируемый фасад»

Инструкция по монтажу системы теплоизоляции «Скатная кровля»

Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий

Натуральный утеплитель для частного домостроения, каталог продукции

Новое поколение натуральных безопасных утеплителей от Кнауф

Ursa

URSA теплоизоляция из минерального волокна

Каталог утеплителей Урса – Скатные крыши

Каталог утеплителей Урса – Плоские крыши

Каталог утеплителей Урса – Навесные вентилируемые фасады

Каталог утеплителей Урса – Полы и перекрытия

Каталог утеплителей Урса – Перегородки

Каталог утеплителей Урса – Штукатурные фасады

Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел

Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей

Каталог утеплителей Урса – Стены подвалов и фундаменты

Ниже представлены коэффициенты теплопроводности и использование разных марок рассматриваемых производителей.

Об авторе
admin

Adblock
detector

Теплопроводность утеплителей: назначение, таблица, критерии выбора

Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.

Содержание

  1. Понятие теплопроводности
  2. Факторы влияния на теплопроводность
  3. Характеристики разных материалов
  4. Пенопласт
  5. Экструдированный пенополистирол
  6. Минеральная вата
  7. Базальтовая вата
  8. Стекловата
  9. Вспененный полиэтилен
  10. Напыляемая теплоизоляция
  11. Таблица коэффициентов теплопроводности разных материалов
  12. Иные критерии подбора утеплителей
  13. Объемный вес
  14. Способность держать форму
  15. Паропроницаемость
  16. Горючесть
  17. Звукоизоляция
  18. Практическое применение коэффициента теплопроводности

Понятие теплопроводности

Утеплители имеют разный коэффициент теплопроводности — это главный показатель материала

Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т. е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.

В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.

Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.

Факторы влияния на теплопроводность

Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.

Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.

МатериалПоказатель плотности, кг/м3
Минвата50-200
Экструдированный пенополистирол33-150
Пенополиуретан30-80
Мастика из полиуретана1400
Рубероид600
Полиэтилен1500

Чем выше плотность, тем меньше уровень пароизоляции.

Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.

МатериалТолщина, мм
Пеноплекс20
Минвата38
Ячеистый бетон270
Кладка из кирпича370

При подборе толщины стоит учитывать климат местности, материал постройки.

Характеристики разных материалов

Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.

Пенопласт

Пенопласт и пенополистирол отличаются способом производства, ценой и теплопроводностью

Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.

При горении пенопласта выделяются токсичные вещества.

Экструдированный пенополистирол

Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.

Минеральная вата

Чем плотнее плиты минеральной базальтовой ваты, тем хуже они проводят тепло

Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.

Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.

Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.

Базальтовая вата

Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:

  • не подвергается возгоранию;
  • отличается хорошим показателем тепло- и звукоизоляции;
  • отсутствие слеживания и уплотнения в процессе эксплуатации;
  • экологически чистый строительный материал.

Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.

Стекловата

Стекловата имеет коэффициент теплопроводности выше, чем каменная вата, материал гигроскопичен

Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:

  • Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
  • Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
  • Непродолжительная эксплуатация – через 10 лет происходит усадка.
  • Невозможность применения для утепления влажных комнат.

При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.

Вспененный полиэтилен

Вспененный фольгированный полиэтилен имеет пропускает тепло хуже, чем обычный

Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:

  • маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
  • возможность сохранения до 97 % полезного тепла;
  • стойкость к воздействию влаги;
  • минимальная теплопроводность за счет пор;
  • экологическая чистота;
  • отражающий эффект, за счет которого аккумулируется тепловая энергия.

Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.

Напыляемая теплоизоляция

Пенополиуретан имеет самую низкую теплопроводность

Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:

  • ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
  • Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
  • Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
  • Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.

Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.

Таблица коэффициентов теплопроводности разных материалов

На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.

МатериалТеплопроводность, Вт/м*КТолщина, ммПлотность,  кг/м³Температура укладки,  °CПаропроницаемость, мг/м²*ч*Па
Пенополиуретан0,0253040-60От -100 до +1500,04-0,05
Экструдированный пенополистирол0,033640-50От -50 до +750,015
Пенопласт0,056040-125От -50 до +750,23
Минвата (плиты)0,0475635-150От -60 до +1800,53
Стекловолокно (плиты)0,0566715-100От +60 до +4800,053
Базальтовая вата (плиты)0,0378030-190От -190 до +7000,3
Железобетон2,0425000,03
Пустотелый кирпич0,0585014000,16
Деревянные брусья с поперечным срезом0,181540-500,06

Для параметров толщины применялся усредненный показатель.

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Вес и плотность минваты влияет на качество утепления

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Чем меньше объемный вес, тем меньше затрачивается материала.

Способность держать форму

Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Способность изделия держать форму также определяется по характеристикам упругости.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Оптимальный вариант для частного строительства – самозатухающие материалы.

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Нормальный показатель звукоизоляции – плотность от 50 кг/м3.

Практическое применение коэффициента теплопроводности

Коэффициент теплопроводности необходим для вычисления объема утеплителя в климатическом поясе

После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.

Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.

Достаточная толщина теплоизоляционного слоя – 50 см.

Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.

Найден новый метод контроля электропроводности | Новости Массачусетского технологического института

Группа исследователей из Массачусетского технологического института нашла способ управлять как теплопроводностью, так и электропроводностью материалов, просто изменяя внешние условия, например температуру окружающей среды. А обнаруженная ими технология может изменить электропроводность более чем в 100 раз, а теплопроводность — более чем в три раза.

«Это новый способ изменения и контроля свойств» материалов — в данном случае класса, называемого перколированными композитными материалами — путем контроля их температуры, — говорит Ган Чен, профессор энергетики Массачусетского технологического института имени Карла Ричарда Содерберга и директор Pappalardo Micro. и Лаборатории нанотехнологий. Чен является старшим автором статьи с описанием процесса, которая была опубликована в Интернете 19 апреля.и появится в следующем выпуске Nature Communications . Ведущими авторами статьи являются бывшие приглашенные ученые Массачусетского технологического института Руйтин Чжэн из Пекинского педагогического университета и Цзиньвэй Гао из Южно-Китайского педагогического университета, а также нынешний аспирант Массачусетского технологического института Цзяньцзянь Ван. Исследование было частично поддержано грантами Национального научного фонда.

Система, разработанная Ченом и его коллегами, может быть применена ко многим различным материалам как для тепловых, так и для электрических применений. Находка настолько нова, говорит Чен, что исследователи надеются, что некоторые из их коллег немедленно ответят: «Мне это пригодится!»

Одно из возможных применений новой системы, объясняет Чен, — предохранитель для защиты электронных схем. В этом случае материал будет проводить электричество с небольшим сопротивлением при нормальных условиях комнатной температуры. Но если цепь начнет нагреваться, это тепло увеличит сопротивление материала, пока при некоторой пороговой температуре он не заблокирует поток, действуя как перегоревший предохранитель. Но затем, вместо необходимости сброса, по мере охлаждения цепи сопротивление уменьшается, и цепь автоматически возобновляет свою работу.

Другим возможным применением является хранение тепла, например, от системы солнечных коллекторов, с последующим использованием его для нагрева воды или домов или для выработки электроэнергии. Значительно улучшенная теплопроводность системы в твердом состоянии помогает ей передавать тепло.

По сути, исследователи поместили крошечные хлопья одного материала в жидкость, которая, подобно воде, образует кристаллы при затвердевании. В своих первоначальных экспериментах они использовали чешуйки графита, взвешенные в жидком гексадекане, но они продемонстрировали универсальность своего процесса, продемонстрировав контроль проводимости и в других комбинациях материалов. Жидкость, используемая в этом исследовании, имеет температуру плавления, близкую к комнатной температуре, что выгодно для работы в условиях, близких к температуре окружающей среды, но этот принцип должен быть применим и для использования при высоких температурах.

Этот процесс работает, потому что, когда жидкость замерзает, давление ее формирующейся кристаллической структуры толкает плавающие частицы в более тесный контакт, увеличивая их электрическую и тепловую проводимость. Когда он плавится, это давление сбрасывается, и проводимость падает. В своих экспериментах исследователи использовали суспензию, содержащую всего 0,2 процента чешуек графита по объему. Такие суспензии удивительно стабильны: частицы остаются неопределенно долго взвешенными в жидкости, как было показано при исследовании контейнера со смесью через три месяца после смешивания.

Путем выбора различных жидкостей и различных материалов, взвешенных в этих жидкостях, критическая температура, при которой происходит изменение, может регулироваться по желанию, говорит Чен.

«Использование фазового перехода для управления проводимостью нанокомпозитов — очень умная идея, — говорит Ли Ши, профессор машиностроения Техасского университета в Остине. Ши добавляет, что, насколько ему известно, «это первое сообщение об этом новом подходе» к созданию такой обратимой системы.

«Я думаю, что это очень важный результат», — говорит Джозеф Хереманс, профессор физики, машиностроения и аэрокосмической техники в Университете штата Огайо. «Тепловые переключатели существуют», но включают в себя отдельные детали из разных материалов, тогда как «здесь у нас есть система без макроскопических движущихся частей», — говорит он. «Это отличная работа».

Поделиться этой новостной статьей:

  • Ган Чен
  • Наноинженерная группа

HiK Plate | Теплораспределители с высокой проводимостью

Тепловые диаграммы, показывающие алюминиевую крышку и основание (вверху) и алюминиевую крышку с основанием HiK™ (внизу).

Пластины HiK™ или пластины с высокой проводимостью — это распределители тепла со встроенными тепловыми трубками для передачи тепла в системе в соответствии с требованиями. Эти пластины особенно полезны для охлаждения нескольких мощных компонентов и управления тепловой нагрузкой. Пластина HiK™ собирает и перемещает тепло от этих отдельных источников тепла к радиаторам с жидкостным или воздушным охлаждением с минимальными градиентами температуры. Поскольку электроника продолжает развиваться с более высокой мощностью и меньшими размерами, пластины HiK ™ являются отличным способом отвода тепла для повышения производительности. Независимо от того, идет ли речь о повышении мощности системы или снижении температуры точки перегрева в условиях жаркой окружающей среды, пластины HiK™ обеспечивают надежное и простое в интеграции тепловое решение.

 

Алюминий имеет теплопроводность 180 Вт/м·К.  Как указано в Использование тепловых трубок, пластин HiK™, паровых камер и кондуктивного охлаждения , эффективная проводимость пластин HiK™ составляет от 600 до 1200 Вт/м·К и более. Дополнительным преимуществом является то, что пластины HiK™ дешевле, чем испарительные камеры (которые имеют более высокую эффективную теплопроводность), и намного, намного дешевле, чем карты с инкапсулированным графитом (которые также имеют более низкую эффективную теплопроводность). Пластины HiK™ также могут использовать L-образные тепловые трубки для увеличения эффективной высокой проводимости по углам .

Вращающиеся валы HiK™

 

Прокрутите слева направо и справа налево, используя стрелку в центре изображения. Демонстрирует сравнение обычной алюминиевой пластины с пластиной HiK™. Самая высокая температура обычной алюминиевой пластины составила 90,3 °C, а алюминиевой пластины HiK™ — 69,1 °C. 

Многие системы встроенной электроники с платами VME/VPX имеют следующую конфигурацию:0003

  • Металлические рамки под электроникой, которые служат распределителями тепла для отвода тепла к краю карты
  • Фиксатор платы/клиновидный замок для механического и термического крепления платы к корпусу
    • Обеспечивает простоту сборки и жесткое крепление
    • Простота обслуживания и замены карт
  • Шасси, отводящее тепло одним из двух способов:
    • Жидкостное охлаждение, обычно в основании, в зависимости от проводимости от шасси
    • Воздушное охлаждение с использованием ребер, прикрепленных непосредственно к боковинам шасси

Рис.