Расход арматуры на фундаментную плиту: Расчет количества арматуры для фундаментной плиты: шаг арматуры, диаметр, калькулятор

Содержание

Расчет количества арматуры для фундаментной плиты: шаг арматуры, диаметр, калькулятор

Содержание

  1. Описание монолитного плитного фундамента
    1. Плюсы и минусы
  2. Способы создания арматурного каркаса
    1. Из стальной арматуры
    2. Из стеклопластиковой арматуры
  3. Определение сечений
  4. Схема армирования
    1. Расчет количества стержней вручную
    2. Онлайн калькулятор расчета
  5. Как можно избежать ошибок при армировании плиты – заключение

Плитный фундамент наиболее востребован при строительстве домов из теплоэффективных материалов: газо- и пенобетона, арболита, полистиролбетона, керамоблоков. В погоне за отменными теплоизоляционными качествами их плотность уменьшается, что не лучшим образом сказывается способности сопротивляться изгибающим нагрузкам. Плита, за счёт большой площади опирания, наиболее статична и к тому же подходит практически для любых грунтов – отсюда и такая популярность. А так как многие застройщики ведут самостоятельное беспроектное строительство, вопрос о расчете количества арматуры для фундаментной плиты вызывает у них наибольший интерес.

Площадь плитного фундамента соответствует площади здания по осям, иногда лишь ненамного превышая её для того, чтобы можно было установить облицовку с утеплением. Именно это отличает данный вид фундамента от прочих, и делает его наиболее надёжным в плане пространственной устойчивости. Однако, чтобы обеспечить её с учётом воздействующих нагрузок и прочностных характеристик грунта, плиту нужно грамотно спроектировать.

В определённых случаях требуется предусмотреть не плоский вариант, а ребристый, причём рёбра могут быть направлены как вниз, так и вверх. Первый вариант – это традиционный вид ребристой плиты. Смысл её работы заключается в том, что грунт, находящийся между рёбрами, под давлением здания уплотняется и включается в работу синхронно с горизонтальной частью конструкции — это даёт возможность уменьшить толщину бетона. Изгибающий момент приходится на центр плиты, в котором продольно всегда располагается промежуточное ребро, поэтому верхнюю зону требуется армировать более интенсивно.

На просадочных грунтах лучше всего работает плита с рёбрами вверх. Устроив поверх них монолитное перекрытие, можно получить железобетонное основание с коробчатым сечением, которое идеально противостоит неравномерным просадкам. Если подобных проблем на участке нет, такой вариант плиты используют при строительстве домов из низкоплотного ячеистого бетона, для которого любые подвижки основания чреваты трещинообразованием.

Плита с рёбрами вверх под газобетонные стены

Прежде всего, это удобно, так как рёбра в данном случае играют роль цоколя и позволяют поднять выше уровень пола первого этажа. Если проблем с просадочностью грунта нет, цокольное перекрытие делают не монолитное, а балочное, что позволяет обеспечить доступ к расположенным под полом трубам в случае необходимости ремонта. Так как в рёбрах имеется дополнительное армирование, горизонтальная часть плиты тоже может проектироваться с меньшей толщиной.

Естественно, в каждом случае расчет арматуры для плитного фундамента производится индивидуально, и никакого общего рецепта здесь быть не может. Разве что даются какие-то общие рекомендации, на которых, собственно и построен принцип работы онлайн калькулятора.

Устройство каждого вида плиты имеет свои резоны, но в общих чертах список достоинств и недостатков данной конструкции таков:

ПлюсыМинусы
Главным достоинством плитных фундаментов является их высокая несущая способность, возможность устройства в сложной гидрогеологической обстановке, в том числе при высоком УГВ.Высокая материалоёмкость.
При условии правильного расчёта с учётом характеристик грунта, исключается крен и вероятность неравномерной просадки.Высокая себестоимость по сравнению с лентами мелкого заложения и ростверками на столбах.
Ребристая структура даёт возможность получить экономию бетона, но при этом очень важен правильный расчёт арматуры.При наличии рёбер жёсткости, опалубку приходится формировать дважды.
Если плита поверхностная, кладка стен может осуществляться без цоколя. При этом тело плиты одновременно будет выполнять функции чернового пола.Заливку рёбер невозможно произвести одновременно с плитой, поэтому времени на формирование ребристого фундамента уходит больше.
При возведении дома с подвалом или цокольным этажом, роль направленных вверх рёбер играют стены. В данном случае этот вид плиты единственно возможный, и он обеспечивает заглублённой части дома идеальную жёсткость.Теоретически плиту можно устроить и на неровном рельефе, но на практике этого никто не делает, потому что дорого и технически сложно.
Если подвал не нужен, всегда есть возможность сделать плиту в незаглублённом варианте, а это существенная экономия на земляных работах.Наиболее трудоёмкой получается плита с коробчатым сечением: в виде чаши с монолитным перекрытием. Но это самый надёжный фундамент для просадочных грунтов.
Благодаря совмещению плиты с фундаментными лентами (снизу или сверху), есть возможность уменьшить толщину горизонтальной части и тем самым сэкономить на количестве заливаемого бетона.Вводы под коммуникации, электроэнергию и слаботочные линии прокладываются под плитой, в песчаном подстилающем слое, и в процессе эксплуатации доступа к ним нет. Поэтому профессиональное проектирование обязательно, и оно должно предусматривать резервные линии на случай выхода из строя основных трубопроводов.
Благодаря поверхностному расположению монолита и небольшой толщине, минимальный расход пиломатериалов на опалубку. 

Самые популярные проекты серии FH:

Проект FH-90 Windows

Общая площадь:

90м²

Подробнее

Проект FH-114 Optimus

Общая площадь:

114м²

Подробнее

Проект дома FH-115 Status

Общая площадь:

115м²

Подробнее

Почему плитный фундамент делается не просто бетонный, а железобетонный? Да потому, что бетон хорошо работает только на сжатие, а вот справляться с нагрузками на изгиб и растяжение ему помогает арматура. Без неё может быть залита только плита пола, которая не воспринимает нагрузок от веса стен и прочих конструкций здания. А если учесть ещё и силы морозного пучения, которые непременно действуют на плиту при малом заглублении, становится понятно, что без арматуры никак не обойтись.

Стальная арматура – это традиционный вариант армирования бетонных конструкций. Она представляет собой горячекатаные стержни из сплава железа с углеродом и легирующими добавками (маркируется А). Стержни бывают гладкими и профилированными.

Гладкие (класс А1) в фундаментных каркасах используются исключительно в качестве конструкционной арматуры (поддерживающей рабочие стержни), так как плохо сцепляются с бетоном. Из этой арматуры в плитах могут выполняться разве что подставки-лягушки или плоские каркасы для поддержки сетки верхнего яруса. Сваривать такую арматуру нельзя, можно только вязать.

Профилированная арматура (классы A2-A5) является в каркасе основной и, будучи уложенной в плите в продольном и поперечном положении, воспринимает растягивающие усилия на себя. Рифлёная арматура отличается по форме профиля, который бывает:

  1. Кольцевым. Это традиционная для нашей страны арматура, выпускающаяся по ещё советскому стандарту (ГОСТ 57*81). Её сечение представляет собой круглый профиль с двумя продольно идущими выступами, соединяемыми поперечными рёбрами по двухзаходной спиралевидной линии при диаметре более 8 мм, и по однозаходной линии при диаметре 6 мм. Именно к этому виду относится применяемая для вязки фундаментных каркасов арматура класса А3(А400).
  2. Серповидным. Этот вид арматуры имеет несколько другую форму профиля: у неё винтовые рёбра не закольцованы, а в местах примыкания к продольным выступам у них имеются промежутки. Сделано это для удобства сварки. Так как эта арматура соединяется иным способом, чем кольцевая, то и выпускается она по другому стандарту (ГОСТ 52544*2006).
  3. Существует ещё арматура со смешанным профилем. Он введён для повышенного сцепления и только для арматуры класса А500. Стержней более низкого качества с таким профилем не производят, и это позволяет определять класс арматуры визуально.

Внешние различия между арматурой для сварки и вязки

Кстати, о классах. Обозначения А1, А2, А3 и т.д. устаревшие, им на смену давно пришла более современная классификация А300, А400, А600. Чтобы избежать путаницы, в строительной документации почти всегда указываются оба варианта маркировки – новая в скобках.

Старая и новая классификация арматуры для вязки


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Задать вопрос

Для свариваемой арматуры старая маркировка не применяется: пишут просто А400С. Знаки в маркировке означают, что арматура горячекатаная, с пределом текучести не меньше 500 Н/мм², со сварным способом соединения стержней, о чём и говорит буква «С».

Изначально стеклопластик был придуман для применения в авиационной и космической промышленности, так как при меньшем весе у него почти втрое выше прочность на разрыв и отсутствует коррозия. С момента создания технологии пултрузии (протяжки), по которой изготавливают рельефную арматуру, аналогичную металлической, область применения композитов расширилась, и её активно стали применять в строительстве.

  • Сегодня такую арматуру изготавливают не только из стеклопластика (СПА), но из углепластика, базальтопластика и их комбинаций. Наиболее дешёвым является именно стеклопластик, а потому и арматура из него наиболее востребована в строительстве.
  • Как и металлическая арматура, композитная предлагается длинномером в бухтах, в отдельных стержнях и заводских картах. Учитывая меньший вес таких изделий, из расчёта на тонну или килограммы такая арматура получается втрое дешевле, если сравнивать аналогичные диаметры.
  • Благодаря лучшим физико-механическим характеристикам композитов, стержни для каркаса можно брать меньшего диаметра, так что выгодна такая арматура не только из-за цены. Если стальные стержни для каркасов фундаментов берут не менее диаметра 12 мм, то стеклопластиковые можно брать диаметром 8 мм – на две размерных ступени меньше.
  • У стеклопластика модуль упругости ниже, чем у стали примерно в 5 раз, но он постоянный, и не зависит ни от нагрузок, ни от окружающей температуры – и в это несомненный плюс. Так же у композита высокая прочность на разрыв, что и даёт возможность уменьшать диаметр стержней.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Задать вопрос

Предел прочности у стальной арматуры составляет порядка 400 Мпа, а у композитной, в 3-4 раза выше. У бетона эта характеристика по сравнению даже с металлом невысока, при перегрузках цементный камень начинает разрушаться первым, и тогда в работу включается арматура. Вот здесь-то и становится важным предел её прочности, ведь чем выше цифра, тем большую нагрузку способен выдержать фундамент.

Следуя этой логике делаем вывод, что при армировании композитной арматурой плита будет в три раза выносливее. Почему же тогда стеклопластик не заменяет стальную арматуру повсеместно? Всё из-за того же модуля упругости (эластичности). При пиковых нагрузках такая арматура хоть и не рвётся, но способна растягиваться и провисать, а бетон из-за этого сильнее растрескивается. Но в малоэтажном строительстве таких нагрузок нет, поэтому здесь применение композитной арматуры наиболее распространено. Главный резон её применения – отсутствие коррозии.

Согласно нормативам, площадь сечения рабочей арматуры железобетонной конструкции должна составлять не менее 0,05% от площади поперечного сечения монолита. Допустим, вам нужно залить плиту размером 8*10 м толщиной 0,3 м. Площадь её поперечного сечения составит 8 м* 0,3 м = 2,4 м². 0,05% от этой цифры составляет 0,12 м² – или 12 см².

Теперь, ориентируясь на полученную цифру, подбираем диаметр арматуры вот по такой таблице:

Таблица подбора диаметров арматуры

Находим полученное значение (меньше нельзя, больше можно), нужные цифры в таблице подчёркнуты красным. Согласно табличным данным, при диаметре арматуры 14 мм каркас должен состоять из 8 стержней с шагом 125 мм. При диаметре стержней 12 мм, сетка должна состоять из 11 стержней с шагом 91 мм (округляем в большую сторону до 100 мм). В плоской плите у нас два ряда арматуры, поэтому и шаг между стержнями можно сделать в два раза больше – 200 мм.

Для фундаментной плиты под малоэтажный дом, арматура диаметром 12 мм, устанавливаемая с шагом 200, является усреднённым и самым оптимальным вариантом. Слишком маленький шаг арматуры в плите фундамента не позволяет бетону нормально проходить между прутьями каркаса при заливке, а слишком большой может сделать армирование и вовсе бесполезным, так как в этом случае бетону в зоне квадрата внутри ячейки, всё равно приходится работать на растяжение.

Диаметр 12 мм для стальной арматуры считается минимальным, даже когда плита фундамента имеет меньший размер. Если она формируется без проекта, необходим определённый запас прочности.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Задать вопрос

Расчёт диаметра для композитной арматуры обычно делают как для стальных стержней, но по факту берут на одно, или даже два значения ниже.

Принцип замены диаметров стальных стержней на композитные

Расчет арматуры для плиты фундамента зависит от её толщины – а она может быть принципиально разной, если сравнивать, к примеру, плоскую плиту с ребристой. В плоской плите, предназначенной для жилого дома из газобетона, толщина всегда больше 250 мм, поэтому армируется она всегда объёмным каркасом. В этом случае у него два уровня рабочей арматуры, соединяемых между собой плоскими каркасами или специальными арматурными подставками.

Оптимальный шаг сетки, как уже было сказано, 200*200 мм. Дополнительные стержни закладывают в местах возведения внутренних стен, тяжёлой кирпичной печи или камина, несущей колонны, отверстий под коммуникации. Но в целом, арматура распределена по плите равномерно.

Визуализация шага арматуры рулеткой

Если плита ребристая, у неё есть дополнительная несущая основа, поэтому толщина горизонтальной части может уменьшаться до 120 мм. При толщине плиты менее 150 мм она армируется не объёмным, а плоским каркасом. То есть, рядов рабочей арматуры будет не два, а один, но при этом шаг между стержнями будет не 200, а 100 мм.

Расчет армирования рёбер, которые, по сути, являются фундаментными лентами, выполняется отдельно. Используется тот же принцип расчёта, что и для плиты (0,05% от поперечного сечения), только каркас в соответствии с формой монолита, будет иметь иную конфигурацию. Учитывая, что высота ребра от подошвы до обреза обычно не превышает 400 мм, для его армирования обычно хватает 4 продольных стержня d=12 мм. Их поддерживают хомуты из арматуры d=8 мм, расставленные с шагом 50 см.

Чтобы правильно рассчитать необходимое количество арматуры, необходимо иметь перед глазами схему её расстановки. Так что, если проекта у вас нет, сделать чертёж придётся самостоятельно.

Рассчитаем для примера расход арматуры на плитный фундамент размером 8*10 м с объёмным каркасом.

Количество продольных стержней d=12 мм:

  1. 10 м (длина плиты) — 0, 035 м *2 (два боковых защитных слоя толщиной по 35 мм) = 9,93 м — длина одного стержня.
  2. 9,93 м : 0,2 м (шаг расстановки стержней) – 1 = 48,65 шт — количество стержней в одной сетке. Округляем до 49 штук.
  3. 49 шт*2 = 98 шт – общее количество продольных стержней в двух уровнях армирования.

Количество поперечных стержней d=12 мм:

  1. 8 м (ширина плиты) — 0, 035 м *2 (толщина защитных слоёв бетона) = 7,93 м – длина одного стержня.
  2. 7,93 м : 0,2 м – 1 = 38,65 шт стержней в одном ярусе. Округляем до 39 штук.
  3. 39 шт*2 = 78 штук — общее количество поперечных стержней в двух уровнях армирования.

Суммируем: 98+78=176 шт. Так как арматура продаётся по 11,7 м, вам придётся купить 176*11,7м=2059,2 м арматуры. При диаметре 12 мм, 1 метр стальной арматуры весит 0,888 кг. Соответственно, общий вес составит 1829 кг, или 1,83 тн.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Задать вопрос

Продаются стержни длиной и по 6 м, но тогда вам все пояса придётся составлять из кусков, а при подсчёте количества нужно будет учитывать величину нахлёста. В таком случае расход арматуры может оказаться ещё больше.

Аналогично производится и расчёт арматуры для плоских каркасов, устанавливаемых вертикально: сначала для одного, учитывая его длину, ширину и количество перемычек, а потом умножаете на количество поддерживающих поясов. Единственно, если плита монтируется без подбетонки, снизу толщина защитной оболочки должна быть не 35, а 75 мм.

Самые популярные проекты серии FH:

Проект Windows Villa FH-90WV

Общая площадь:

90м²

Подробнее

Проект Master Dom FH-144 c мастер-спальней

Общая площадь:

144м²

Подробнее

Проект FH-150 Full HDom

Общая площадь:

150м²

Подробнее

Рассчитать, сколько нужно арматуры для фундамента плита, можно и с помощью одного из онлайн сервисов, предлагаемых почти на каждом строительном сайте. Всё, что в такой калькулятор требуется ввести, это размеры плиты, количество уровней армирования, диаметр и шаг расстановки арматуры.

Мы решили сделать такой расчёт сразу на трёх разных сервисах. При одинаково введённых данных, все три дали абсолютно разные сведения по результатам расчетов, причём погрешность ответов довольно большая. Дело в том, что такие сервисы не учитывают отходы на резку арматуры, а высчитывают конкретное количество стержней, нужное на данный каркас.

Но ведь вам, даже если и нарежут в магазине стержни в размер, посчитают-то всё равно за целые, по 11,7 м. Считаем, что наш ручной расчёт арматуры на фундаментную плиту получился более точным. Лишь один калькулятор, в котором подсчёты выполнялись с 10% запасом, выдал ответ, наиболее близкий к тому, что получили мы.

Пример расчёта арматуры для плиты фундамента на калькуляторе

Если учитывать при покупке отпускную длину стержня, никакой запас на раскрой и не понадобится делать. Для плиты заданного нами размера (8*10 м), и продольные, и поперечные стержни короче отпускной длины. Может быть так и получится больше обрезков, но их можно использовать для изготовления П-образных хомутов, соединяющих торцы стержней верхней и нижней сетки. Да и плоские каркасы можно сделать из них же, только нужно правильно посчитать количество отходов.

Главной ошибкой в проектировании фундаментной плиты, которая влияет на её несущую способность, является неправильное определение толщины монолита. От неё зависит площадь поперечного сечения плиты, а соответственно и подбор диаметра арматуры, и шаг её расстановки.

Но правильный расчет диаметра арматуры для монолитной плиты фундамента ещё не гарантирует итогового качества конструкции, важно ещё грамотно произвести монтаж. Чтобы избежать ошибок, следует учитывать такие нюансы:

  • При наращивании длины арматурные стержни соединяют не встык, а внахлёст. Для арматуры d12 мм минимальный нахлёст составляет 38 см.
  • Длина всех прутьев – и не только рабочих, но и поддерживающих, должна быть такой, чтобы вокруг арматуры образовывался защитных слой бетона. Стержни не должны оголяться и контактировать с грунтом, иначе коррозия по цепочке будет передаваться всему каркасу. Композитная арматура коррозии не боится, но она так же должна быть под защитой бетонного слоя — разве что, можно сделать его немного тоньше.
  • Размер ячеек каркаса не должен превышать 350 мм, так как это ослабляет конструкцию, вынуждая бетон работать на растяжение.
  • Нижний ряд рабочей арматуры должен укладываться только на пластиковые подставки, а не на обломки кирпичей или куски досок.

Чтобы каркас не оказался перекошенным и имел правильную геометрическую форму, выставлять нижний ряд арматуры в горизонталь нужно по отметкам, вынесенным на обноску или борта опалубки.

Как рассчитать арматуру на монолитную плиту

Содержание

  1. Информация по назначению калькулятора.
  2. Общие сведения по результатам расчетов.
  3. Необходимый расчёт арматуры на монолитную плиту.
  4. Для чего нужен армопояс?
  5. Порядок расчета арматуры.
  6. Определение сечений.
  7. Схема армирования.
  8. Расчет количества.
  9. Корректировка конструкции ж/б плиты.
  10. Монолитный плитный фундамент.
  11. Калькулятор материалов для монолитной фундаментной плиты
  12. Основные достоинства монолитного плитного фундамента:
  13. Основные достоинства монолитного плитного фундамента:
  14. Недостаток плитного сплошного фундамента:

Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

Плитный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.

Обязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.

Главным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.

Обязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация .

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.

Общие сведения по результатам расчетов.

  • Периметр плиты — Длина всех сторон фундамента
  • Площадь подошвы плиты — Равняется площади необходимого утеплителя и гидроизоляции между плитой и почвой.
  • Площадь боковой поверхности — Равняется площади утеплителя всех боковых сторон.
  • Объем бетона — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
  • Вес бетона — Указан примерный вес бетона по средней плотности.
  • Нагрузка на почву от фундамента — Распределенная нагрузка на всю площадь опоры.
  • Минимальный диаметр стержней арматурной сетки — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения плиты.
  • Минимальный диаметр вертикальных стержней арматуры — Минимальный диаметр вертикальных стержней арматуры по СНиП.
  • Размер ячейки сетки — Средний размер ячеек сетки арматурного каркаса.
  • Величина нахлеста арматуры — При креплении отрезков стержней внахлест.
  • Общая длина арматуры — Длина всей арматуры для вязки каркаса с учетом нахлеста.
  • Общий вес арматуры — Вес арматурного каркаса.
  • Толщина доски опалубки — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
  • Кол-во досок для опалубки — Количество материала для опалубки заданного размера.

Для расчета УШП необходимо вычесть объем закладываемого утеплителя из объема рассчитанного бетона.

Необходимый расчёт арматуры на монолитную плиту.

Как рассчитать арматуру на монолитную плиту.

Производится расчет арматуры для фундаментной плиты в соответствии с нормативами СНиП 52-01 от 2003 года. Основными задачами при проектировании являются: выбор сечения стержней, хомутов, изготовление схемы армирования каждого пояса, определение количества в метрах, перевод в единицы веса для покупки на стройрынке.

Для чего нужен армопояс?

На фундаментную плиту действуют преимущественно растягивающие нагрузки от веса здания, мебели, жильцов, ветра, снега. Однако присутствуют и сжимающие усилия. Бетон работает исключительно на сжатие, причем подобным нагрузкам этот материал противостоять не может. Поэтому в нижней части плиты у подошвы помещают арматурную сетку, компенсирующую сжатие. В верхней части уложена вторая сетка, воспринимающая усилия растяжения.

Как рассчитать арматуру на монолитную плиту.

Порядок расчета арматуры.

Согласно нормативам СНиП, процент армирования бетона должен составлять 0,15 – 0,3% (М300 – М200, соответственно). Практика проектирования показывает, что пруток периодического сечения 12 мм обладает достаточным запасом прочности для любых малоэтажных зданий с кирпичными, бетонными стенами. Максимально возможный диаметр стержня, используемый индивидуальными застройщиками, составляет 16 мм. То есть, с увеличением сборных нагрузок необходимо увеличивать, как толщину плиты, так и диаметр арматуры.

Расчет арматуры начинается с определения толщины плиты:

  • длина пролета делится на 20 – 25
  • добавляется 1% погрешности
  • получается высота конструкции

Как рассчитать количество арматуры для монолитной плиты.

Например, для стандартных 6 м пролетов толщина конструкции составляет 30 см. Армируют плиту исключительно горячекатаной арматурой класса А2 и выше. Хомуты, вертикальные перемычки допускается изготавливать из прутков класса А1 диаметром 6 – 8 мм.

Определение сечений.

Расчет арматуры по сечению зависит от прочности бетона (класс В10 – В25), арматуры (класс А240 – А500, В500) на сжатие. Чаще используется бетон В25, арматура А500, имеющие расчетное сопротивление 11,5 МПа, 435 МПа, соответственно. Опирание по контуру в кирпичных коттеджах (четыре несущих стены по периметру) встречается редко. Поэтому используется расчет статической конструкции со средними опорами, план нижнего уровня. Конфигурация верхнего, мансардного этажа обычно совпадает с ним.

  • фундамент имеется под проемами
  • нагрузки распределяются равномерно
  • сопротивление грунта минимально возможное 1 кг/м2

Как рассчитать арматуру для монолитной плиты.

Последнее допущение позволяет перестраховаться при незначительном увеличении сметы строительства, не заказывать геологию, топографию, определять грунты на глаз. При сборе нагрузок достаточно производят расчет нагрузки от плиты – объемный вес ж/б (2500 кг/м 2 ) умножается на высоту плиты, коэффициент надежности (1,2). Аналогичным образом добавляются нагрузки от всех конструкций (полы, стропила, кровля, перекрытия, снеговая, ветровая).

Схема армирования.

При наличии внутренних стен нагрузки распределяются неравномерно, расчет арматуры производится по нескольким сечениям плиты. Вычисления могут производиться по нескольким методикам с примерно одинаковым результатом (новый СНиП, способ ж/б балки, по моменту сопротивления), изменится высота расположения сетки армопояса.

После чего корректируется принятая на начальном этапе толщина плиты для экономии бетона. После сверки с таблицами СНиП вычисляются необходимые площади сечения, количество прутков, диаметр арматуры. Затем этот параметр унифицируется с учетом коэффициента армирования в зонах опор. При значительных габаритах плиты реальная экономия металлопроката достигает 27% за счет отсутствия нижней сетки в ее центральной части

Расчет количества.

Арматура обычно продается весом, у каждого продавца имеется таблица перевода длины прутка в массу и наоборот. Если произвести вычисления заранее, можно проконтролировать эти цифры при покупке. Производится расчет количества арматуры по схеме:

  • вычисление количества продольных стержней – из длины короткой стены необходимо отнять два защитных слоя по 2 см, разделить цифру на шаг сетки, отнять еще единицу
  • подсчет количества поперечных стержней – аналогично предыдущему способу, только с размером длиной стены

Далее необходимо учесть наращивание прутков по длине:

  • стандартный размер арматуры 6 м либо 12 м
  • доставить на объект легче 6 м прутки
  • если длина стен больше этого размера, потребуется нарастить цельный стержень обрезком
  • минимальный нахлест по СНиП 60 диаметров (например, 60 см для 10 мм арматуры)

Как правильно рассчитать арматуру для монолитной плиты.

Останется сложить длину всех прутков, нахлестов, чтобы получить общий погонаж «рифленки». Для хомутов используется гладкая арматура, куски которой изгибаются в пространственные конструкции сложной формы. Подсчитать длину заготовки можно сложением всех сторон.

Для каждого стыка потребуется 30 см кусок вязальной проволоки. Их количество можно вычислить перемножением продольных прутков на поперечные. Если в проект заложена «шведская», чашеобразная плита, расход арматуры автоматически увеличится:

  • в каждом ребре жесткости проходят 4 продольных прутка (возможно с нахлестом)
  • они связываются квадратными хомутами через каждые 30 – 60 см
  • ребра обязательны по периметру
  • могут добавляться параллельно короткой стене через 3 м

На последнем этапе расчет арматуры заключается в переводе единиц измерения. Зная массу погонного метра, можно вычислить общий вес каждого сортимента металлопроката для плитного фундамента коттеджа.

Корректировка конструкции ж/б плиты.

Если заменить дорогостоящий плитный фундамент ленточным невозможно по ряду объективных причин, можно постараться снизить бюджет строительства. Например, при толщине 30 см крупногабаритные конструкции сложно залить даже при регулярном приеме смеси из миксеров. Выходом часто становится подбетонка:

  • при толщине 5 – 7 см она не требует армирования
  • заливается в один прием
  • выравнивает основание
  • защищает гидроизоляцию от порывов щебнем
  • снижает толщину защитного слоя (нижнего) на 20 – 35 мм
  • использует тощий бетон

Как рассчитать арматуру для монолитной плиты.

Однако в этом случае сечение стержней верхнего слоя придется пересчитать. Для несимметричных плит (внутренняя стена смещена относительно центра конструкции) производится расчет по большему значению длины пролета, как для симметричных. Запас прочности повысится при незначительном повышении сметы.

Подобным способом можно рассчитывать арматуру для плитных фундаментов любой сложности. Кроме того, существует ПО для проектировщиков, делающих это с высокой точностью.

Монолитный плитный фундамент.

Монолитная фундаментная плита представляет собой ни что иное как плиту из бетона, имеющую плоскую или же ребристую форму, содержащую внутри арматурное укрепление, которое называется армированием. Такой тип фундамента применим чаще всего на слабых размываемых грунтах под строительство не очень тяжелых строений или же при возведении тяжелых печей и каминов, а также под тяжелое стационарное оборудование.

Данный калькулятор позволяет рассчитать для монолитного сплошного фундамента:

  • Объем бетона для заливки плиты.
  • Необходимое количество материалов для приготовления бетона.
  • Количество доски, необходимое для устройства опалубки.
  • Ориентировочную стоимость всех стройматериалов.
  • Армирование фундаментной плиты зависит от геологических условий и проекта.

Калькулятор материалов для монолитной фундаментной плиты

Онлайн калькулятор для расчета приблизительной стоимости и необходимого количества материалов для монолитной фундаментной плиты.

Основные достоинства монолитного плитного фундамента:

  • высокая несущая способность;
  • способность противостоять смещению и вспучиванию грунта;
  • простота конструкции;
  • хорошая способность противостоять грунтовым и талым (поверхностным) водам;
  • возможность строительства цокольного этажа, защищённого от талых вод;

Основные достоинства монолитного плитного фундамента:

  • высокая несущая способность;
  • способность противостоять смещению и вспучиванию грунта;
  • простота конструкции;
  • хорошая способность противостоять грунтовым и талым (поверхностным) водам;
  • возможность строительства цокольного этажа, защищённого от талых вод;

Плитный фундамент хорош в том случае, когда строительство ведется на песчаных подушках или сильно сжимаемых, пучинистых грунтах. Благодаря тому, что монолитная плита покрывает всю площадь здания, для такого фундамента не опасны смещения грунта.

Плитный фундамент — разновидность мелкозаглубленного ленточного — представляет собой либо монолитную плиту либо железобетонную решетку под всю площадь здания. Такой фундамент используется для возведения коттеджа (особенно из ячеистых бетонных блоков), На тяжелых пучинистых, насыпных и слабонесущих грунтах возможно устройство так называемых плавающих фундаментов из сплошных или решетчатых монолитных железобетонных плит.

Недостаток плитного сплошного фундамента:

  • недостатков у монолитной плиты, за исключением её высокой затратности — нет.

Монолитный сплошной фундамент, особенно заглубленный может составить от 30 до 50% стоимости коробки дома. Если же плитный фундамент мелкозаглубленный, то затраты на бетон и арматуру компенсируются простотой сооружения, если-же плитный фундамент заглубленный, то помимо большой массы бетона придется завезти значительное количество песка и щебня для сооружения подушки и обратной засыпки, аренда техники для сооружения котлована и другие расходы зачастую превышают разумную пропорцию (20 % общей стоимости коробки).

 

Рекомендация: Это всего лишь обзорная статья о том как рассчитать арматуру для плитного фундамента. Для общего развития ее нужно прочитать. Но если вы не хотите получить массу проблем и потерять деньги, то лучше привлечь специалиста и проконтролировать его.

Как армировать бетонную плиту на земле для предотвращения растрескивания

Стальная арматура и арматура из сварной проволоки обеспечивают контроль ширины трещины в ненесущих плитах на земле.

21 мая 2020 г.

Kim Basham, PhD PE FACI

KB Engineering LLC

Вверху и внизу: Правильно размещенная/поддерживаемая арматура приведет к правильному расположению арматуры в плите. Обратитесь к документации производителей, чтобы узнать максимальное расстояние между стульями и другими опорами, и используйте минимальное расстояние между арматурами 12 дюймов, чтобы работники могли не ходить по арматуре.

Большинство плит на грунте не армированы или номинально армированы для контроля ширины трещин. При расположении в верхней или верхней части толщины плиты стальная арматура ограничивает ширину случайных трещин, которые могут возникнуть из-за усадки бетона и температурных ограничений, осадки подстилающего слоя, приложенных нагрузок или других факторов.

Этот тип армирования обычно называют усадочным и температурным армированием.

Усадочное и температурное армирование отличается от структурного армирования. Структурная арматура обычно размещается в нижней части толщины плиты для увеличения несущей способности плиты. Большинство конструкционных плит на земле имеют как верхний, так и нижний слои армирования для контроля ширины трещин и увеличения несущей способности. Из-за проблем конструктивности и затрат, связанных с двумя слоями армирования, конструкционные плиты на земле не так распространены, как ненесущие плиты.

Несмотря на то, что существует несколько вариантов армирования ненесущих плит на грунте, в этой статье основное внимание уделяется стальным арматурным стержням и арматуре из сварной проволоки для ограничения ширины трещин.

Неограниченный рост ширины трещины приводит к выкрашиванию краев вдоль внестыковых трещин при воздействии колесного транспорта, особенно погрузчиков с жесткими колесами.

Основы

Стальная арматура и арматура из сварной проволоки не предотвратят растрескивание. Армирование в основном бездействует, пока бетон не треснет. После растрескивания он становится активным и контролирует ширину трещин, ограничивая их рост.

Если плиты укладываются на высококачественное основание с равномерной опорой и состоят из бетона с низкой усадкой, а швы должным образом установлены на расстоянии 15 футов или менее, армирование обычно не требуется. Скорее всего, случайных или внезапных трещин будет немного. Если случайные трещины все-таки возникают, они должны оставаться достаточно плотными из-за ограниченного расстояния между швами и низкой усадки бетона, что ограничивает возможность эксплуатации или проблемы с техническим обслуживанием в будущем.

Когда плиты укладываются на проблемное основание с риском неравномерной поддержки или состоят из бетона с умеренной или высокой усадкой, или расстояние между швами превышает 15 футов, тогда необходимо усиление для ограничения ширины трещин в случае их возникновения. По мере того, как ширина трещины увеличивается и приближается к 35 милам (0,035 дюйма), эффективность передачи нагрузки через блокировку заполнителя снижается, и могут возникать дифференциальные вертикальные перемещения через трещины или «раскачивание» плиты. Когда это происходит, обнажаются края трещины и, вероятно, происходит растрескивание краев, особенно если плита подвергается воздействию колесного транспорта и особенно погрузчиков с жесткими колесами. Как только начинается выкрашивание, ширина трещин на поверхности становится больше, а износ плиты вдоль трещин значительно увеличивается.

Если деформационные швы недопустимы и не устанавливаются, требуется термоусадочное и температурное армирование. Этот подход к проектированию иногда называют непрерывно армированными или бесстыковыми плитами, и он допускает появление многочисленных, близко расположенных (от 3 до 6 футов) мелких трещин по всей плите.

Неограниченный рост ширины трещины приводит к выкрашиванию краев вдоль внестыковых трещин при воздействии колесного транспорта, особенно погрузчиков с жесткими колесами.

Варианты контроля трещин

Как правило, существует два варианта борьбы с трещинами в плитах на грунте: 1) контролировать расположение трещин путем установки компенсационных швов (не контролирует ширину трещины) или 2) контролировать ширину трещин путем установки арматуры (не контролировать место трещины).

В варианте 1 мы сообщаем плите, где трескаться, а ширина деформационных швов или трещин в швах в значительной степени определяется расстоянием между швами и усадкой бетона. По мере увеличения расстояния между швами и усадки бетона ширина швов увеличивается. Подобно трещинам, если ширина шва приближается к 35 милам, эффективность блокировки заполнителя для передачи нагрузок и предотвращения дифференциальных вертикальных перемещений по швам может быть значительно снижена. По этой причине многие проектировщики используют устройства для передачи нагрузки, включая стальные дюбели, пластины или непрерывную арматуру через деформационные швы, чтобы обеспечить положительную передачу нагрузки и ограничить дифференциальные вертикальные перемещения по швам.

В варианте 2 мы позволяем плитам растрескиваться случайным образом, но контролируем ширину трещин с помощью стальных арматурных стержней или арматуры из сварной проволоки. Обычно при таком варианте компенсационные швы не устанавливаются. Вместо этого растрескивание происходит хаотично, образуя многочисленные, плотно скрепленные между собой трещины. Из-за внешнего вида этот вариант борьбы с трещинами всегда следует обсуждать с владельцем.

Резка арматуры в местах стыков

Соблюдайте осторожность при использовании обоих способов борьбы с трещинами в одной и той же плите. Если через усадочные швы проходит слишком много арматуры, швы становятся слишком жесткими и могут не растрескиваться и не раскрываться, как предполагалось. Когда деформационные швы не активируются (т. е. трескаются и открываются) из-за армирования, обычно возникает внешовное или случайное растрескивание. Если используются оба варианта, необходимо ограничить количество арматуры, проходящей через стыки, чтобы обеспечить правильную активацию.

Некоторые проектировщики предписывают резать всю арматуру в деформационных швах, в то время как другие могут указывать резать каждый второй стержень или проволоку. Если обрезать каждый второй стержень или проволоку, оставшаяся арматура поможет обеспечить передачу нагрузки и сведет к минимуму дифференциальные перемещения панелей, но не будет препятствовать активации соединений. Если в спецификациях и строительных чертежах не указано, что делать с температурно-усадочной арматурой в местах стыков, подрядчики должны подать запрос на получение информации. Много раз подрядчиков необоснованно обвиняют в растрескивании вне швов, связанном с этой проблемой проектирования.

Метод перемещения арматуры из сварной проволоки в указанное место методом «зацепи и потяни» является неэффективным методом, которого следует избегать подрядчикам.

Расположение арматуры

Стальная арматура и арматура из сварной проволоки должны располагаться в верхней трети толщины плиты, поскольку усадочные и температурные трещины возникают на поверхности плиты. Трещины шире у поверхности и сужаются с глубиной. Таким образом, арматура для контроля трещин никогда не должна располагаться ниже середины глубины плиты. Арматура также должна располагаться достаточно низко, чтобы пила не разрезала арматуру. Для армирования сварной проволокой Институт армирования проволоки рекомендует размещение стали на 2 дюйма ниже поверхности или в пределах верхней трети толщины плиты, в зависимости от того, что ближе к поверхности. Конструкторы обычно определяют положение армирования, указывая защитный слой бетона (от 1 1/2 до 2 дюймов) для армирования.

Размещение одного слоя арматуры в центре или на середине глубины плиты не рекомендуется (за исключением плит толщиной 4 дюйма). Это универсальное место, где проектировщик надеется увеличить несущую способность плиты, а также обеспечить контроль ширины трещины. Однако размещение арматуры посередине плиты не позволит эффективно решить ни одну из этих задач.

Стальная арматура и арматура из сварной проволоки должны поддерживаться и достаточно связываться вместе, чтобы свести к минимуму перемещения во время укладки бетона и отделочных работ. В противном случае арматура может неправильно расположиться в плите. Поддержите арматуру стульями или опорами из сборных железобетонных стержней. Стулья должны иметь песчаные или опорные плиты, а перекладины должны иметь квадратное основание размером не менее 4 дюймов, чтобы гарантировать, что они не утонут в основании. Используйте расстояние между опорами, которое гарантирует, что арматура не провиснет между опорами или не будет продавлена ​​пешеходным движением или свежим бетоном. Гибкая арматура, включая арматуру из сварной проволоки, требует меньшего расстояния между опорами. В дополнение к указанию типа и количества арматуры проектировщики должны указать тип и расстояние между опорами, чтобы обеспечить правильное расположение арматуры.

Арматура из сварной проволоки никогда не должна размещаться на земле и тянуться на место после укладки бетона. Техника «зацепи и потяни» всегда приводит к неправильному расположению арматуры. Как рабочие могут равномерно «зацепить и потянуть» сварную проволочную арматуру в указанном месте, стоя на арматуре?

Армирование, частично заглубленное в основание, не обеспечивает контроля ширины трещины. Без опорных стульев или сборных железобетонных блоков арматура обычно оказывается в нижней части плиты или заглубляется в основание.

Допуски на размещение

Допуск вертикального размещения арматуры в плитах на грунте составляет ± 3/4 дюйма от указанного места. Для плиты толщиной 12 дюймов или менее допуск защитного слоя бетона составляет — 3/8 дюйма, измеренный перпендикулярно бетонной поверхности, и уменьшение защитного слоя не может превышать одной трети указанного защитного покрытия. Во многих случаях допуск покрытия переопределяет допуск вертикального размещения. Правильное размещение и поддержка арматуры поможет обеспечить соблюдение этих допусков вертикального размещения.

Первоначально эта статья была опубликована 25 февраля 2013 г. 

Ссылки:

ACI 117-06. «Спецификация допусков для бетонных конструкций и материалов»

ACI 302.1R-04. «Руководство по устройству бетонных полов и плит»

ACI 360R-06. «Проектирование плит на грунте»

Заявление о позиции ASCC № 2. «Расположение рулонной сварной сетки в бетоне»

Технические факты WRI. «Опоры необходимы для долговременной работы арматуры из сварной проволоки в плите на уровне грунта» (TF 702-R-08)

Технические факты WRI. «Как определить, заказать и использовать армирование сварной проволокой» (TF 202-R-03)

10 вещей, которые нужно знать о волокнистом армировании бетона

Hillman представляет системы крепления бетона для средних нагрузок на WOC

2 90 10 лучших статей о строительстве на этой неделе: забудьте о заводской табличке, если хотите самый американский пикап

10 самых читаемых статей о строительстве: за неделю от 24 августа

0090

ACR выпускает первого в мире робота для подъема, переноски и укладки арматуры @CONEXPO: робот IronBOT

Советы и стратегии по работе с композитами GFRP в строительстве

Система управления Link-Belt 220 X4S дает операторам лучшее из обоих миров

Оригинальная новая система управления на Link-Belt 220 X4S сочетает в себе ощущение управления пилотом с индивидуальной настройкой E/H.

Как выбрать правильную антенну для работы с георадаром

При оценке того, какую антенну выбрать для работы, важно учитывать поверхностный покров и присутствующую почву, а также глубину, которую вы хотите сканировать.

Что делать с доминирующими стыками полов

Редкий случай, когда все правильные действия могут усугубить проблему.

Как отбивать армированный бетон при сверлении с помощью перфораторов Diablo

Производительность падает при ударе по арматуре при сверлении. С перфораторами Rebar Demon вы можете сверлить до 7 раз дольше в армированном бетоне и оставаться эффективным!

Экономьте деньги, стройте быстрее: синтетические макроволокна в бетонных конструкциях

В условиях быстрых изменений на рынке скорость по-прежнему определяет отрасль бетонного строительства. В то время как макроволокна могут значительно сократить время в графике проекта, возникает вопрос, как узнать, какое макроволокно использовать?

Top Post 2022: Macrofibers & Super Bowl — внутри бетона самого большого стадиона НФЛ

Использование синтетического волокна позволило сэкономить затраты, время и трудозатраты на строительство стадиона SoFi за счет использования фибробетона на верхних палубах .

Дилемма подрядчика по армированию сварной проволокой (WWR)

Должна быть альтернатива снятию и замене WWR.

Руководство по фибробетону: советы по проектированию, спецификации и применению

Изучение основных аспектов фибробетона, включая его конструкцию, технические характеристики, применение и способы надлежащей отделки изделия.

Экологически чистая микрофибра PSI Fiberstrand REPREVE 225 для армирования бетона

Как отбить армированный бетон при сверлении с помощью перфораторов Diablo

Производительность снижается при ударе по арматуре при бурении. С перфораторами Rebar Demon вы можете сверлить до 7 раз дольше в армированном бетоне и оставаться эффективным!

Этот подрядчик полагается на роботизированную вязку арматуры

TyBOT от Advanced Construction Robotics помогает Shelby Erectors повысить рентабельность и улучшить опыт владельца проекта — затем IronBOT еще больше ускорит работу

CRSI: арматурный стержень, помеченный буквой W, теперь имеет двойной класс

Изменения 2020 года в ASTM A615 соответствуют требованиям к арматуре как A706. Материал A706 теперь соответствует или превосходит все химические и механические требования для соответствующего размера и сорта A615.

GatorBar Утвержден Департаментом транспорта штата Вирджиния

Композитная арматура, армированная стекловолокном, GatorBar была включена в Оценочный список новых продуктов Департаментом транспорта штата Вирджиния.

Diablo просверливает арматуру насквозь сверлом Rebar Demon SDS на выставке World of Concrete 2022

Передовой опыт работы с георадаром: сэкономьте время, деньги и головную боль бетонных подрядчиков

Одного знания о том, что инженерные сети и структурные элементы существуют под землей, недостаточно. на рабочем месте.

Новые батареи дают инструментам MAX USA больше стяжек и отрезков

Предлагая тысячи дополнительных стяжек и сотни дополнительных резов на одной зарядке, ваши устройства MAX USA TWINTIER, ярусы для арматуры и устройства для резки арматурных стержней PJRC160 только что были обновлены.

Руководство по армированию бетона в декоративных плитах

Узнайте, почему армирование декоративной бетонной плиты важно, и рассмотрите различные варианты армирования.
Энн Балог, ConcreteNetwork.com | Опубликовано 16 сентября 2022 г.

Фото Aisyaqilumaranas / Shutterstock.

Если вы планируете установить новую декоративную бетонную дорожку, патио, тротуар или плиту пола, то, что вы используете для их укрепления, почти так же важно, как и сам бетон. Существует ряд армирующих материалов для бетонных плит, и у каждого типа есть свои плюсы и минусы, в зависимости от области применения. Вот обзор ваших вариантов, а также советы о том, как выбрать лучший тип арматуры для вашего следующего бетонного проекта.

Зачем армировать бетонные плиты?

Бетонные плиты обладают высокой прочностью на сжатие, благодаря чему они отлично противостоят силам сжатия и ударам. Но когда дело доходит до прочности на растяжение или способности противостоять растягивающим усилиям, бетон не так хорош. На самом деле прочность бетона на растяжение составляет всего около 15% его прочности на сжатие.

Вот почему многие бетонные плиты требуют армирования. Он обеспечивает прочность на растяжение, которой не хватает бетону, чтобы помочь ему выдерживать силы растяжения, вызванные осадкой грунтового основания, большими нагрузками, усадкой при высыхании, а также тепловым расширением и сжатием. На самом деле армирование не предотвращает образование трещин в бетоне, но помогает ограничить ширину и серьезность трещин, если они все же возникают, что может сэкономить вам много денег на ремонтных работах в будущем.

Какие есть варианты усиления?

Для повышения прочности бетона на растяжение можно использовать различные материалы. Они классифицируются как первичное армирование, такое как стальная арматура или сварная проволочная сетка, или вторичное армирование, которое используется для минимизации эффектов пластической усадки и теплового расширения и сжатия.

Гайдером / Shutterstock

Стальные арматурные стержни

Эти стальные стержни диаметром 1/2 дюйма, обычно называемые «арматурными стержнями», встраиваются в центр плиты для создания сетки, которая проходит вдоль и поперек, чтобы помочь бетону лучше сопротивляться растягивающим и изгибающим усилиям. . Ребра на поверхности арматурного стержня позволяют бетону прилипать к нему и создают единую прочную структуру. Арматура из углеродистой стали (также называемая черной арматурой) используется в большинстве жилых проектов. Арматура из нержавеющей стали также доступна, но она дороже и обычно предназначена для проектов, где коррозия является серьезной проблемой.

RDun / Shutterstock

Арматура с эпоксидным покрытием

Это стальная арматура, полностью покрытая эпоксидной смолой для минимизации вероятности коррозии. Более дорогие, чем простые стальные стержни (но менее дорогие, чем нержавеющая сталь), они обычно используются для плит в морской среде или которые регулярно подвергаются воздействию солей против обледенения.

вирой Роудхлай / Shutterstock

Сварная проволочная сетка

Этот тип арматуры, также называемый сварной проволочной сеткой, изготавливается из стальных проволок, расположенных под прямым углом друг к другу и сваренных электросваркой в ​​местах их пересечения. Он часто используется в качестве альтернативы стальной арматуре в жилых бетонных плитах, поскольку проволочную сетку можно разместить быстрее, чем отдельные стержни, что снижает общую стоимость.

TopFotography / Shutterstock

Синтетические волокна

Тип вторичной арматуры, состоящий из небольших полипропиленовых или полиэтиленовых волокон (обычно менее 0,12 дюйма в диаметре), которые смешиваются непосредственно с бетоном для уменьшения трещин при пластической усадке. Хотя синтетические волокна не обеспечивают усиление конструкции, как арматурная сталь, они улучшают прочность бетона на изгиб и устойчивость к истиранию и ударам. (См. Использование волокон для вторичного армирования.)

Рекомендуемые продукты

Brickform Ultra-M1x
Добавьте цвет и волокна с помощью одного продукта

Вторичное бетонное волокно
Переработанный полипропилен, соответствующий стандарту LEED

Ультраволокно 500®
Не скатывается и не пушится, принимает цвет

Плюсы и минусы различных типов армирования бетона

Армирование бетона стальной арматурой или сварной проволочной сеткой обеспечивает множество преимуществ, включая защиту от трещин, потребность в меньшем количестве контрольных соединений, а также повышенную прочность конструкции и ударопрочность. Тем не менее, сталь должна быть правильно расположена на средней глубине плиты или чуть выше, чтобы быть эффективной и избежать таких проблем, как затенение арматуры и пятна ржавчины на поверхности бетона, если металл подвергается воздействию влаги из-за растрескивания или повреждения.

Синтетические волокна не ржавеют и не подвергаются коррозии, но они не заменяют стальную арматуру в бетонных плитах, которые будут выдерживать большие нагрузки. Также существует вероятность того, что на поверхности бетона будут видны волокна, такие как тонкие волоски или пушок, хотя надлежащая отделка обычно предотвращает эту проблему. Положительным моментом является то, что синтетические волокна являются лучшим типом армирования для снижения вероятности растрескивания при пластической усадке, поскольку они смешиваются со свежим бетоном перед укладкой. Каждое волокно действует как мини-армирующий элемент, обеспечивающий локальную прочность на растяжение по всей плите.

Какой тип подкрепления следует использовать?

Ответ на этот вопрос обычно зависит от назначения бетонной плиты и вашего бюджета. Использование стальной арматуры придаст вашей бетонной плите дополнительную структурную прочность и особенно важно для подъездной дороги, которая, как ожидается, будет поддерживать большие грузовики или интенсивное движение. Но для типичной жилой бетонной подъездной дорожки, патио или тротуара проволочная сетка — отличная (и менее дорогая) альтернатива.

Если эстетика является приоритетом и вас беспокоит растрескивание при пластической усадке, портящее внешний вид бетонной поверхности, рассмотрите возможность использования синтетических волокон в вашей плите в дополнение к стальной арматуре или вместо нее. Синтетические волокна также придадут вашему бетону повышенную устойчивость к истиранию, разрушению и ударным нагрузкам.

Армированный бетон

Обладает большей устойчивостью к растягивающим напряжениям, вызванным осадкой, большими нагрузками, тепловым расширением и сжатием.


С меньшей вероятностью растрескивается, имеет повышенную структурную прочность и ударопрочность.


Остается более эстетичным, поскольку меньше подвержен растрескиванию, усадке и истиранию.


Установка часто обходится дороже, но в результате получается более прочный бетон с более длительным сроком службы.

Бетон без армирования

Обладает хорошей прочностью на сжатие, но не обладает прочностью на растяжение, чтобы противостоять силам растяжения.


Может деформироваться при растяжении, что приведет к неэстетичным трещинам и более частым ремонтам.


Может потребоваться обширный ремонт трещин, которые будет трудно, если вообще возможно, замаскировать.


В некоторых проектах армирование не требуется и не стоит дополнительных затрат. Проконсультируйтесь с вашим бетонным подрядчиком.

Всегда ли бетонные плиты нуждаются в армировании?

Армирование следует рассматривать как недорогую страховку от риска и серьезности растрескивания бетона, но оно может потребоваться не для каждого проекта. Как правило, если вы заливаете бетонную плиту глубиной более 5 дюймов, вы должны установить арматуру или сварную проволочную сетку, чтобы сохранить ее структурную целостность, особенно если бетон будет подвергаться большим нагрузкам.