Расчет перекрытия железобетонные: Расчет железобетонной плиты перекрытия, опертой по контуру

Содержание

Расчет плиты перекрытия из железобетона

Главная / Статьи / Расчет плиты перекрытия – почему так важно обратиться к профессионалам?

Железобетонные монолитные перекрытия относятся к самым универсальным и надежным стройматериалам. Железобетонные монолитные плиты востребованы, в особенности, если это частный дом с уникальной планировкой и разными размерами комнат (включая овал или круг) или ход строительства дома ведется без применения подъемных кранов. С их помощью можно перекрывать помещения практически любых размеров, возводить долговечные и выносливые конструкции с высокой звукоизоляцией. Все плиты перекрытия проходят тех проверку на каждом этапе производства и изготавливаются строго по ГОСТ.

 

Для определения нагрузки на перекрытие объекта, которая в будущем будет приходиться на нее от множества факторов, необходимо произвести расчет плиты перекрытия.

 

Итак, необходимо принимать в расчет следующие показатели:

 

• Вес собственный плиты перекрытия

 

• Вес технологического оборудования, которое будет устанавливаться при перекрытии

 

• Масса перегородок

 

• Вес (проектный) конструкции пола

 

• В расчет также включается вес людей, которые могут находиться на площади перекрытия

 

Размер ЖБИ плит перекрытия подбирается из предполагаемой нагрузки и изоляции, окружающей среды и желаний заказчика. Все тонкости расчета ЖБИ строго нормированы СНиП «Бетонные и железобетонные конструкции без предварительного напряжения арматуры» и «Бетонные и железобетонные конструкции. Основные положения». По всем текущим вопросам, которые касаются железобетонных конструкций, обращаться следует именно к этим двум нормативным документам.

 

Главная суть в расчете – подобрать такие параметры нормального сечения, класс арматуры и бетона, чтобы проектируемая плита не была разрушена при воздействии внешних факторов и максимально возможной нагрузки.

Расчет плиты перекрытия – дело ответственное, которое требует к себе профессионального и серьезного подхода. Расчет включает в себя определение длины плиты — расчетной длины, а также расчеты материала стен на соответствующие нагрузки, установление геометрических параметров плиты, типа арматуры и бетона, измерение опор и нагрузки на плиту (могут быть самыми разнообразными), расчетных предпосылок, подбора сечения арматуры и много другое.

При расчете используются специальные сложные (для обывателя) формулы. Произвести расчет железобетонных плит перекрытия для человека, который  в первый раз столкнулся с расчетом строительных конструкции, сориентироваться во всех особенностях и тонкостях материала практически невозможно. Тем более в этом деле нет месту ошибкам и недочетам. 

Доверьтесь профессионалам, звоните прямо сейчас +7 (843) 258-58-92!

Читатайте также: 

  • Железобетонные дорожные плиты: применение
  • Все о ребристых плитах. Коротко и понятно
  • Виды плит, их назначение и особенности

Расчет толщины плиты перекрытия железобетонной и монолитной | Статья завода БЗСК

Содержание:

  1. Для чего делается расчет плиты перекрытия в строительстве
  2. Основные данные для расчета плит перекрытия 
  3. Виды расчетных нагрузок на плиту перекрытия 
  4. Почему мы приводим самые простые примеры расчета железобетонных плит 


Метод используется при проектировании и разработке раздела «Конструкции железобетонные» и представляет собой вычисление максимальной допустимой распределительной нагрузки на плиту для определения наименьшей и наибольшей толщины, ширины и длины детали. Расчет имеет экономическое значение с точки зрения выбора плиты по характеристикам и стоимости и технологическое значение, поскольку позволяет определить методы монтажа ЖБ конструкций с перекрытиями. 

Для чего делается расчет плиты перекрытия в строительстве

В промышленном, гражданском и частном строительстве используется несколько способов перекрытия железобетонными плитами. Для правильного расчета необходимо определиться с методом монтажа и особенностями конструкции. 

Основные виды конструкций перекрытия с использованием монолитной железобетонной плиты:

  • балочное применяется, когда перекрываемый пролет больше длины одной плиты, при этом учитывается тип плиты — для ребристой балки укладываются перпендикулярно ребрам, для гладкой выбирается направление, перпендикулярное направлению укладки плиты;
  • безбалочное перекрытие представляет собой создание конструкции, опирающейся на несущие стены, а при значительных расстояниях на капители несущих колонн с креплением по закладным сваркой;
  • кессонное перекрытие формируется за счет пересечения ребер, создающих несущую сетку с распределенной по ребрам нагрузкой;
  • шарнирное бесконсольное или перекрытие с защемлением балок применяется в зависимости от расчетной нагрузки на узлы конструкции.  

В проектном и частном строительстве могут возникать разные ситуации, когда уровни строения имеют разную конфигурацию. Поэтому расчет монолитной плиты перекрытия делается с поправкой на разброс параметров в виде коэффициента.

        

Основные данные для расчета плит перекрытия 

Железобетонная плита для перекрытия этажей и проемов является несущей частью конструкции, для которой характерно распределение нагрузок по нескольким направлениям. В основе расчетов толщины и прочности лежит необходимость получить значения размеров и толщины, при которых:

  • плита ляжет на опорные точки стен (балок, колонн) с необходимым для устойчивости нахлестом;
  • на железобетонную конструкцию будут воздействовать нагрузки, не вызывающие критического изгиба плиты под действием веса частей конструкции и собственной массы;
  • нагрузка на изгиб будет ограничена таким образом, чтобы на растяжение работала арматурная сетка, а не бетонный монолит;
  • общий вес конструктивной части сооружения вместе с плитой не превышал допустимые нагрузки на основание и расположенные ниже части.  

При корректном расчете можно получить результат, позволяющий подобрать готовую ЖБ плиту по размерам, весу и прочности относящуюся к одной из категорий стандартных ЖБИ. В практике современного строительства расчет монолитной плиты перекрытия делается с учетом пространственного армирования, так как подавляющее большинство изделий этого типа выпускается с применением арматуры. 

Виды расчетных нагрузок на плиту перекрытия 

Принято классифицировать нагрузки на плиту перекрытия как длительные, кратковременные, статические и динамические. Например , весовая нагрузка при эксплуатации строения относится к длительным (вес мебели, техники, других элементов конструкции), нагрузка от строительного оборудования и техники будет кратковременной и динамической, воздействие на плиту со стороны других деталей будет долговременным и статическим. При этом могут возникать кратковременные деформирующие воздействия при усадке здания, температурных колебаниях, от проезда транспорта.  

Особенностью расчета железобетонных плит считается основной упор на распределительные нагрузки. Самый простой расчет при известных значениях будет выглядеть так: основная нагрузка 400 кг/м.кв, вес плиты 250 кг/м.кв, стяжка и конструкция пола — 100 кг/м.кв. Итого нагрузка составит 750 кг/м.кв, значит, можно подобрать плиту по размерам и прочности, применив страховочный коэффициент 1,2 на непредвиденное нагружение. Важно! — в приведенном примере расчета железобетонной плиты перекрытия указаны именно нагрузки на квадратный метр, то есть не абсолютные цифры веса каких-то предметов. 

Почему мы приводим самые простые примеры расчета железобетонных плит 

В практике строительства распространены стандартные ЖБ плиты. Расчет размеров и прочности для заливки монолитной плиты перекрытия без армирования и с использованием опалубки не может быть сделан на месте, без применения специальных программ. При таких вычисления необходимо учитывать сечение и тип арматуры, качество и марку прочности бетона, особенности конструкции монолитного здания.  

Для того, чтобы избежать ошибок в расчетах для определения размеров и несущей способности плит перекрытия, можно выбрать один из путей:

  • использовать стандартные ЖБ плиты с армированием и известными характеристиками, сделав предварительный расчет нагрузки с учетом веса плиты и деформаций;
  • использовать программы для проектирования ЖБ узлов и конструкций с базой данных доступных по СНиП 52-01-2003 и СП 52-101-2003 значений и параметров. 

Приводим пример расчетов плиты для пустотной плиты перекрытия для жилого помещения при размерах пролета 6 м и ширине 1,5 м. В качестве опоры используются поперечные стены здания, что делает расчет аналогичным расчету двутавровой профильной балки, свободно уложенной на две опоры. 

Высота сечения многопустотной предварительно напряженной плиты по конструктивным соображениям:

h = (1/15÷1/30)l0 = 0,385÷0,19

принимаем h = 0,22м

Рабочая высота сечения:

h0 = h – as = 0,22 – 0,03 = 0,19м

Расчетная нагрузка на 1 м при ширине плиты 1,5 м с учетом коэффициента надежности по назначению здания γn = 0,95

  1. · постоянная q = 6,266·1,5 = 9,399 kH/м
  2. · временная p = 0,98 ·1,5 = 1,47 kH/м
  3. · полная q + p = 7,246·1,5 = 10,869 kH/м

Нормативная нагрузка на 1м

  1. · постоянная qn = 5,399·1,5 = 8,099 kH/м
  2. · временная pn = 0,7·1,5 = 1,05 kH/м
  3. · полная qn + pn = 6,099·1,5 = 9,149 kH/м

Если вы не располагаете опытом проектирования и выполнения расчетов для разных типов монолитных и железобетонных плит, то выполнение этой задачи будет невозможно. Именно поэтому в жилом строительстве отдается предпочтение готовым ЖБИ с известными параметрами. 

Расчет железобетонного подвесного перекрытия::EPLAN.HOUSE

Монолитные железобетонные плиты перекрытия , несмотря на большое количество сборных плит, по-прежнему пользуются спросом. Особенно это актуально, если это дом с уникальной планировкой, где все комнаты разного размера или бригада будет производить строительство без подъемных кранов. В таких случаях установка монолитной железобетонной плиты перекрытия позволяет значительно сократить расходы на материалы или доставку и монтаж. Однако больше времени строитель потратит на подготовительные работы, в том числе на опалубку. Однако не это отпугивает людей, приступающих к бетонированию пола. Сделать опалубку, заказать арматуру и бетон теперь не проблема. Проблема в том, как определить, какой бетон и какая арматура для этого требуется.

Эта статья не является руководством к действию, а носит чисто информационный характер. Все тонкости расчета железобетонных конструкций строго стандартизированы.

Расчет любой строительной конструкции вообще и железобетонной плиты перекрытия в частности состоит из нескольких этапов:  

  • выбор геометрических параметров сечения;
  • определяют класс бетона и класс арматуры, чтобы проектируемая плита не разрушилась при воздействии максимально возможной нагрузки.

Расчет мы будем выполнять для сечения, перпендикулярного оси x.

Не будем проводить расчеты:

  1. местное сжатие,
  2. продавливание,
  3. действие поперечных сил,
  4. трещины кручения (предельные состояния первой группы),
  5. раскрытия (предельные состояния для второй группы).

Предполагая заранее, что для обычного плоского подвесного пола в жилом доме такие расчеты не требуются, а, как правило, и требуются. При этом ограничимся только расчетом поперечного (типового) сечения на действие изгибающего момента. Кому не нужны пояснения по определению геометрических параметров, выбору расчетной модели, набору нагрузок и предпосылкам расчета, могут сразу перейти к расчетному примеру.

Этап 1. Определение расчетной длины плиты.

Реальная длина плиты может быть любой, а вот расчетная длина, иначе говоря, пролет балки (а в нашем случае плиты перекрытия) — совсем другое дело. Пролет – это расстояние в свету между несущими стенами. Другими словами, это длина или ширина комнаты от стены до стены. Поэтому определить пролет плиты перекрытия довольно просто. Нужно измерить это расстояние линейкой или другим подручным средством. Конечно, реальная длина плиты будет больше. Монолитная железобетонная плита перекрытия может опираться на несущие стены из кирпича, шлакоблока, камня, керамзитобетона или газобетонных блоков, в нашем случае это не принципиально. Однако допустим, что несущие стены облицованы материалами, обладающими недостаточной прочностью (пенобетон, газобетон, керамзитобетон, шлакоблок). В этом случае материал стены также должен быть рассчитан на соответствующую нагрузку. В данном примере рассмотрим однопролетную плиту перекрытия, опирающуюся на две несущие стены. Расчет железобетонной плиты по контуру, т. е. по четырем несущим стенам, а также многопролетных плит здесь не рассматривается.

Вышеуказанное не остается пустым звуком и лучше усваивается. Примем значение расчетной длины плиты l = 4 м .

Этап 2. Предварительное определение геометрических параметров плиты, класса арматуры и бетона.

Нам пока неизвестны эти параметры, но мы можем настроить их так, чтобы они что-то считали.

Зададим высоту плиты h = 10 см, а условную ширину b = 100 см. В данном случае условность означает, что мы будем рассматривать плиту перекрытия как балку высотой 10 см и шириной 100 см, а значит, полученные результаты следует распространить на все оставшиеся сантиметры ширины плиты. Если предстоит изготовить плиту перекрытия расчетной длиной 4 м и шириной 6 м, то для каждого из этих 6 метров следует принимать параметры, определенные для одного расчетного метра.

Итак принимаем значения высоты h = 10 см , ширины = 100 см , класса бетона В20 , класса арматуры А400

Этап 3. Определение опор.

В зависимости от пролета опоры, материала и веса несущих стен плита перекрытия может рассматриваться:

  • шарнирная неконсольная балка,
  • или шарнирно-консольная балка,
  • или в виде балки с жестким защемлением на опорах.

Почему это важно, описывается отдельно. В дальнейшем мы будем рассматривать шарнирно опертую консольную балку как наиболее распространенный случай.

 

Этап 4. Определение нагрузки на плиту.

 

Нагрузки на балки могут быть самыми разнообразными. С точки зрения строительной механики все, что неподвижно лежит на балке, прибито, приклеено или подвешено к плите перекрытия, представляет собой статическую и часто постоянную нагрузку. Все, что ходит, ползает, бегает, едет и даже падает на балку — это все динамические нагрузки. Как правило, динамические нагрузки носят временный характер. Однако в этом примере мы не будем различать временные (активные) и постоянные (статические) нагрузки. Нагрузка также может быть сосредоточенной, равномерно распределенной, неравномерно распределенной и так далее. Однако мы не будем так углубляться во все возможные комбинации нагрузок. Для данного примера ограничимся равномерно распределенной нагрузкой, так как такой вариант нагружения плит перекрытий в жилых домах является наиболее распространенным. Мы измеряем сосредоточенную нагрузку в Паскалях (или фунтах на квадратный фут (psf) для имперских единиц) или в ньютонах, а распределенную нагрузку — в Н/м.

Здесь мы опускаем детали сбора нагрузок на плиту перекрытия. Допустим, что обычно плиты перекрытий в жилых домах рассчитываются на распределенную нагрузку q1 = 4 кПа. При высоте плиты 10 см вес плиты добавит к этой нагрузке около 2,5 кПа, стяжка и керамическая плитка могут добавить до 1 кПа. Эта распределенная нагрузка учитывает практически все возможные сочетания нагрузок на перекрытия жилых зданий. Тем не менее никто не запрещает рассчитывать конструкции на более высокие нагрузки. Однако ограничимся этим значением и на всякий случай умножим полученное значение распределенной нагрузки на коэффициент запаса γ = 1,2, если вдруг мы еще что-то упустили:

q = (4 + 2,5 +1) 1,2 = 9 кПа

Поскольку мы будем рассчитывать параметры плиты шириной 100 см, эту распределенную нагрузку можно считать линейной нагрузкой, действующей на плиты перекрытия по оси Y и измеряется в кН/м.

 

Этап 5. Определение максимального изгибающего момента, действующего на поперечное (правильное) сечение балки.

Максимальный изгибающий момент для консольной балки на двух шарнирных опорах, а в нашем случае плиты перекрытия, опирающейся на стену, на которую действует равномерно распределенная нагрузка, будет в середине балки:

М max = (q х l 2 ) / 8 (5.1)

Почему так, достаточно подробно описано в другой статье.

для пролета L = 4 M Mmax = (9 x 4 2 ) / 8 = 18KN

Стадии 6.1. на основе следующих проектных допущений:

— Прочность бетона на растяжение принимается равной нулю. Это предположение сделано на основании того, что предел прочности бетона на растяжение значительно меньше предела прочности арматуры (примерно в 100 раз). Поэтому в растянутой зоне железобетонной конструкции образуются трещины из-за разрыва бетона, и, таким образом, в нормальном сечении на растяжение работает только арматура (см. рис. 1).

— Предполагается, что сопротивление бетона сжатию равномерно распределено по зоне сжатия. Сопротивление бетона сжатию принимается не более расчетного сопротивления R b .

Рисунок 1. Схема усилий для приведенного прямоугольного сечения железобетонной конструкции

Для предотвращения эффекта образования пластического шарнира и возможного обрушения конструкции отношение ξ высоты сжатой зоны бетона y к расстоянию от центра тяжести арматуры до вершины балки h 0 , ξ = y/h o (6. 1), должно быть не более предельного значения ξ R . Предельное значение определяется по следующей формуле:

\[ \xi_R  = \frac{0.8}{1+\frac{R_s}{700}} , \text{(6.2)} \]

 

Эта эмпирическая формула основана на опыте проектирования железобетона конструкций, где \(R_s\) — расчетное сопротивление арматуры, МПа. Однако на данном этапе можно вполне обойтись таблицей:

Таблица 220.1. Boundary values ​​​​of the relative height of the compressed zone of concrete
Reinforcement grade A240 A300 A400 A500 B500

The value of ξ R

0,612 0,577 0,531 0,493 0,502
Стоимость

0 R

0,425 0,411 0,390 0,372 0,376

Note: When performing calculations by non-professional designers, I recommend underestimating the value of the compressed zone ξ R by 1. 5 times .

где a — расстояние от центра поперечного сечения арматуры до низа балки. Это расстояние необходимо для того, чтобы обеспечить сцепление арматуры с бетоном; больше a , тем лучше обхват арматуры, но при этом полезное значение h 0 уменьшается. Обычно значение и берется в зависимости от диаметра арматуры. Напротив, расстояние от низа арматуры до низа балки (в данном случае плиты перекрытия) должно быть не менее диаметра арматуры и не менее 10 мм. Дальнейшие расчеты будем производить для а = 2 см.

— При ξ ≤ ξ Р и отсутствии арматуры в сжатой зоне прочность бетона проверяют по следующей формуле: 92}{2} \quad \text {(6.3.4)} \]

Физический смысл формулы (6.3) ясен. Поскольку любой момент можно представить как силу, действующую с конкретным плечом, для бетона должно выполняться указанное выше условие. Другие формулы получаются путем простейших математических преобразований, цель которых станет ясна ниже.

— Проверку прочности прямоугольных сечений с одинарной арматурой при ξ ≤ ξ Р проводят по формуле:

M ≤R s A s (h 0 — 0,5у) (6.4)

Согласно расчету, суть этой формулы в следующем: арматура должна выдерживать такую ​​же нагрузку, как бетон так как на арматуру с тем же плечом действует та же сила, что и на бетон.

Примечание: данная расчетная схема, принимая плечо силового действия (h 0 — 0,5у) , позволяет относительно быстро определить основные параметры поперечного сечения, а именно: покажут формулы, которые логически следуют из формул (6.3) и (6.4). Однако такая конструктивная схема не единственная. Расчет может производиться относительно центра тяжести приведенного сечения. Однако, в отличие от деревянных и металлических балок, расчет железобетона по предельным сжимающим или растягивающим напряжениям в поперечном (нормальном) сечении железобетонной балки довольно затруднителен. Железобетон — композитный, очень неоднородный материал, но это еще не все. Многочисленные экспериментальные данные свидетельствуют о том, что предел прочности, предел текучести, модуль упругости и другие механические характеристики материалов имеют весьма значительный разброс. Например, при определении предела прочности бетона на сжатие одинаковые результаты не получаются даже при изготовлении образцов из бетонной смеси одной партии. Это объясняется тем, что прочность бетона зависит от многих факторов: крупности и качества (в том числе степени загрязнения) заполнителя, активности цемента, способа уплотнения смеси, различных технологических факторов. Учитывая случайный характер этих факторов, рассмотрим предел прочности бетона со случайным значением.

Аналогичная ситуация и с другими строительными материалами, такими как дерево, кирпичная кладка, полимерные композиционные материалы. Даже для классических конструкционных материалов, таких как сталь, алюминиевые сплавы и др., наблюдается заметный случайный разброс прочностных характеристик. Для описания случайных величин используются различные вероятностные характеристики, которые определяются в результате статистического анализа экспериментальных данных, полученных в ходе массовых испытаний. Самый простой из них математическое ожидание и коэффициент вариации , иначе называемый коэффициент вариации . Последний представляет собой отношение среднеквадратичного разброса к математическому ожиданию случайной величины. Так в нормах проектирования железобетонных конструкций коэффициент изменчивости тяжелого бетона учитывается коэффициентом надежности по бетону.

В связи с этим ни одна расчетная схема не будет идеальной для железобетона. Однако не будем отвлекаться, а вернемся к предпосылкам проектирования данной схемы. 92}   \quad \text{(6.6)} \]

Для a m < a R армирование в сжатой зоне не требуется. Значение a R определяется по таблице 1.

— При отсутствии арматуры в зоне сжатия сечение арматуры определяется по следующей формуле:

\[A_s=\frac {R_b b h_0 (1-\sqrt{1-2a_m})}{R_s} \quad \text{(6. 7), } \]

 

где \( y = h_0 (1 — \sqrt{1 — 2a_m }) \) является результатом решения квадратного уравнения формулы (6.3.4), таким образом, формула (6.7) является результатом простых преобразований формулы (6.5).

Далее, а теперь, если вы еще не утонули в этом море формул, давайте посмотрим, в чем польза этих расчетных предпосылок и формул:

 

Пример расчета монолитной железобетонной неконсольной плиты перекрытия на навесных опор является равномерно распределенным действием нагрузки.

Этап 7. Выбор сечения арматуры.

Расчетное сопротивление растяжению арматуры класса А400 по таблице 7 Rs = 355 МПа. Расчетная прочность на сжатие для бетона класса В20 по таблице 4 Rb = 11,5 МПа. Все остальные параметры и нагрузки для нашей плиты были определены ранее. Сначала по формуле (6.6) определяем значение коэффициента a м :

а м = 18 / (1· 0,08 2  · 11,5 · 1000) = 0,24038

размеры также удобно подставить в метрах, значение расчетного сопротивления также было уменьшено до кПа для соблюдения размерности.

Это значение меньше предела для данного класса арматуры по таблице 1 (0,24038 < 0,39), что означает, что арматура в сжатой зоне по расчету не нужна. Тогда по формуле (6.8) необходимая площадь сечения арматуры:

А с  = 11500·100·8(1 — √1 — 2·0,24038) / 355000 = 7,241 см 2 .

Примечание: в данном случае для упрощения расчета использовались размеры поперечного сечения в сантиметрах и расчетные значения сопротивления в кПа.

Таким образом, для армирования одного погонного метра нашей плиты перекрытия можно использовать 5 стержней диаметром 14 мм с шагом 200 мм. Площадь поперечного сечения арматуры составит 7,69см 2 . Арматуру удобно подбирать по таблице 2:

Таблица 2. Площадь отдельных стержней арматуры

90 стержней 3 90 φ 6

666666666666666666666666666666666666666666666666666669а

666666666666666666666666666666666666666666666666666666666. 0383 Φ 18

  Площадь отдельных стержней арматуры (см 2 )
φ 8 φ 10 φ 12 φ 14 Φ 20 Φ 22 Φ 25 Φ 28 Φ 32
1 0.28 0.50 0.79 1.13 1.54 2.01 2.54 3.14 3.80 4.91 6.16 8.04
2 0.57 1.01 1.57 2.26 3.08 4.02 5.09 6.28 7.60 9.82 12.32 16.08
3 0.85 1.51 2.36 3.39 4.62 6.03 7.63 9.42 11.40 14.73 18.47 24.13
4 1.13 2.01 3.14 4. 52 6.16 8.04 10.18 12.57 15.21 19.63 24.63 32.17
5 1.41 2.51 3.93 5.65 7.70 10.05 12.72 15.71 19.01 24.54 30.79 40.21
6 1.70 3.02 4.71 6.79 9.24 12.06 15.27 18.85 22.81 29.45 36.95 48.25
7 1.98 3.52 5.50 7.92 10.78 14.07 17.81 21.99 26.61 34.36 43.10 56.30
8 2.26 4.02 6.28 9. 05 12.32 16.08 20.36 25.13 30.41 39.27 49.26 64.34
9 2.54 4.52 7.07 10.18 13.85 18.10 22.90 28.27 34.21 44.18 55.42 72.38
10 2.83 5.03 7.85 11.31 15.39 20.11 25.45 31.42 38.01 49.09 61.58 80.42

Также для армирования плиты можно использовать 7 стержней Ø12 мм с шагом 140 мм или 10 стержней Ø10 мм с шагом 100 мм.

Прочность бетона проверяем по формуле (6.5)

y = 355 · 7,241 / (11,5 ·100) = 2,374 см

ξ = 2,374 / 8 = 0,29573, это меньше границы 0,531, согласно формулам (6.1) и табл. 1, и меньше рекомендуемое 0,531/1,5 = 0,354, т.е. соответствует требованиям.

11500 · 100 см · 2,374 см · (8 см — 0,5 · 2,374 см)/1000000 = 18,6 кН > М = 18 кН, по формуле (6.3)

355000 · 7,69 см 2 9010,5 (8 см · 2,374 см)/1000000 = 18,6 кН > М = 18 кН, по формуле (6.4)

Таким образом, мы выполнили все требования.

При повышении класса бетона до В25 нам потребуется меньше арматуры для В25 Rb = 14,5 МПа.

а м = 18 / (1 · 0,08 2 · 14500) = 0,1940

А с = 14,5 МПа · 100 см · 8 см (1 — √ 01 — 9) МПа = 6,95 см2

Таким образом, для армирования одного погонного метра нашей плиты перекрытия все равно нужно использовать 5 стержней Ø14 мм с шагом 200 мм или продолжать подбор сечения, но можно не сильно напрягаться, так как эта плита, рассматриваемая шарнирной балки,скорее всего не пройдет расчет на прогиб.Поэтому лучше сразу перейти к оценкам предельных деформаций второй группы,пример определения прогиба приведен отдельно. Здесь скажу,что для плиты для выполнения требований по предельно допустимому прогибу высоту плиты придется увеличить до 13-14 см, а сечение арматуры увеличить до 4-5 стальных стержней диаметром Ø16 мм.

Вот и все. Как видим, сам расчет довольно прост и не занимает много времени. Однако формулы не становятся более очевидными. Теоретически любую железобетонную конструкцию можно рассчитать по классическим, т.е. очень простым и наглядным формулам. Пример такого расчета, как уже было сказано, приведен отдельно. Как обеспечить требуемый класс бетона при бетонировании – тоже отдельная тема.


Калькулятор для инженеров-строителей — Расчет односторонней железобетонной плиты

Калькуляторы CE > Расчет односторонней железобетонной плиты > с простой опорой на обоих концах

Калькулятор расчета односторонней железобетонной плиты с простой опорой с обоих концов (FPS/стандартные единицы США)

Этот калькулятор полезен для проектирования
односторонняя сплошная плита, просто поддерживаемая с обоих концов. Этот калькулятор предполагает нормальный вес бетона и использует обычные единицы FPS/US. Он использует метод расчета прочности в соответствии с кодом ACI 318 Американского института бетона.

Эффективная глубина измеряется от верхней кромки до центра тяжести натянутой арматуры. Этот калькулятор использует концепцию блока напряжения Уитни и измеряет глубину блока напряжения «а» от верхнего края. Пользователю этого калькулятора рекомендуется соблюдать
Рекомендации МСА
для толщины балки, расстояния между арматурными стержнями и защитным покрытием и т. д.

Этот калькулятор также определяет минимальную площадь растянутой арматуры, необходимую для предотвращения образования трещин, и площадь сбалансированной стали, необходимую для сбалансированного сечения. Калькулятор также определяет стоимость R н (прочностной коэффициент сопротивления). Этот калькулятор использует 35% сбалансированной площади арматуры в качестве площади стали для расчета плиты. Если используется сталь марки 60, минимальная толщина плиты принимается равной L/20, где L — пролет плиты. Если марка стали отличается от 60 тысяч фунтов на квадратный дюйм, это значение минимальной толщины умножается на коэффициент (0,4 + 0,01 f y ), где f y выражено в тысячах фунтов на квадратный дюйм.

Пожалуйста, введите значения в соответствующих единицах, упомянутых в форме, приведенной ниже, и начните
расчеты.

ВВОДНЫЕ ЗНАЧЕНИЯ
Пролет плиты (футы):
Приложенная статическая нагрузка (фунтов на фут):
Постоянная нагрузка (фунтов на фут):
Комп. Прочность Conc f ‘_c (ksi):—
33.544.556
SIZE=4>
Предел текучести основной стали f_y (ksi):—
405060
SIZE =4>
Убедитесь, что введены все
значения

ВЫВОД РЕЗУЛЬТАТОВ
Мин. Требуемая толщина плиты (дюймы) =
Отношение уравновешенной арматуры =
Требуемое Rho-1 =
R_n max (ksi) =
Соотношение m ()=
R_n требуемое (ksi)=
R_n требуемое-2 (ksi)=
Comp. Прочность Conc f ‘_c (ksi):=
Предел текучести основной стали f_y (ksi):=
Вариант 1: Арматурный стержень №4
Площадь сбалансированной стали (кв. дюйм) =
Мин. Требуемая площадь стали (кв. дюйм) =
Глубина, которую необходимо обеспечить (дюймы) =
Толщина плиты, которую необходимо обеспечить (дюймы) =
Расчетный момент, M_u (фут-тыс. фунтов) =
Площадь основной арматуры, необходимая для стержня № 4 (в 2 )=
Основной арматурный стержень Расстояние между арматурными стержнями №4 (дюймы)=
Дистр. площадь арматуры, необходимая для стержня № 3 (в 92)=
Дистр. Расстояние между арматурными стержнями № 3 бар (дюймы) =
Пожалуйста, выберите подходящий вам вариант

Другие Калькуляторы прочности

Железобетонная балка

Железобетонная балка с двумя слоями напрягаемой арматуры

(стандартные единицы FPS/США)

Железобетонная балка с
Один слой натянутой арматуры
(СИ/метрические единицы)

Железобетонная балка с двумя слоями натянутой арматуры

(СИ/метрические единицы)

Вы также можете посетить следующий решенный пример

для железобетона

Прочность железобетонной балки двойного армирования
при сжатии стали
не податливой



Номинальная прочность на изгиб двухслойной бетонной балки



Номинальный момент прочности
одноармированной бетонной балки

Вам также могут понравиться следующие ссылки

UDL с правой стороны

Максимальная переменная нагрузка на пролете

Максимальная переменная нагрузка на левой опоре

Отличные калькуляторы

Калькулятор преобразования напряжения
Расчет главного напряжения, максимального напряжения сдвига
и их плоскостей

Калькулятор для расчета подвижной нагрузки
Для определения абсолютного макс.