Содержание
Истинная и средняя плотность материалов — Материалы и свойства
Автор Admin На чтение 5 мин. Просмотров 456 Опубликовано
Истинная плотность (прежнее название – удельный вес) – масса единицы объема материала в абсолютно плотном состоянии, т. е. без пор и пустот. Определяют по формуле ? = m / V, где m – масса материала, кг; V – абсолютный объем, занимаемый материалом (без пор и пустот), м3. Истинная плотность жидкостей и материалов, полученных из расплавленных масс (металла, стекла, а также гранита, мрамора и других подобных горных пород), практически соответствует их плотности в естественном состоянии, а пористых материалов – приводится к абсолютно плотному состоянию искусственным путем.
Истинная плотность – свойство, которое контролируются только при геологической разведке с подземными сетями.
Для горных пород, служащих сырьем при производстве облицовочных материалов, не имеет решающего значения при их оценке. Однако этот показатель позволяет косвенно выявить другие свойства камня, например вычислить его пористость.
Плотность различных материалов
Для определения истинной плотности камня его необходимо получить в абсолютно плотном состоянии, т. е. без пор. Простейший способ заключается в измельчении камня до такой степени, пока каждая его частица не будет иметь внутри себя пор. С этой целью вначале отбирают куски горной породы общей массой не менее 1 кг, тщательно очищают их щеткой от пыли и затем измельчают до крупности менее 5 мм, после чего перемешивают и сокращают пробу примерно до 150 г. Полученную пробу вновь измельчают до крупности менее 1,25 мм, перемешивают и сокращают до 30 г. Оставшуюся пробу вновь измельчают в порошок в фарфоровой ступке, насыпают в стаканчик для взвешивания, высушивают до постоянной массы и охлаждают до комнатной температуры, после чего отвешивают две навески по 10 г каждая. Каждую навеску насыпают в пикнометр (пикнос – плотный, метрео – измеряю, дословно с греческого «измеритель плотности») и заливают дистиллированной водой, заполняя пикнометр не более чем на половину объема. Затем его ставят на песчаную ванну или в водяную баню и кипятят содержимое в течение 15—20 мин для удаления пузырьков воздуха. После этого пикнометр обтирают насухо, охлаждают до комнатной температуры, доливают до метки дистиллированной водой и взвешивают на лабораторных весах. Далее прибор освобождают от содержимого, промывают, наполняют до метки дистиллированной водой и вновь взвешивают.
Истинную плотность р, кг/м3, вычисляют по формуле
? = m?В / (m + m1 – m2) · 1000,
где m – навеска порошка, высушенного до постоянной массы, г; m1 – масса пикнометра с дистиллированной водой, г; m2— то же, с навеской и дистиллированной водой после удаления пузырьков воздуха, г; р„ – истинная плотность воды: рв = 1 г/см3.
Средняя плотность ? (прежнее название – объемная масса) – масса единицы объема материала в естественном состоянии, т. е. вместе с порами и пустотами. Определяется по формуле ? = m / V1, где m – масса материала, кг; V1 – объем материала в естественном состоянии, м3. Средняя плотность металла и стекла практически равна их истинной плотности, у большинства строительных материалов она, как правило, меньше (из-за наличия пор).
Для каждого материала стандарты устанавливают значение влажности, при котором вычисляют среднюю плотность, необходимую для расчета пористости, теплопроводности и теплоемкости материалов, определения стоимости их перевозок и расчета прочности конструкций с учетом их собственной массы.
Истинная и средняя плотности широко используемых материалов показаны в табл. 1.
Средняя плотность – физическое свойство облицовочного камня, используемое обычно при его общей характеристике. Этим показателем пользуются при вычислении массы изделий из камня по их объему или при определении объема, когда известна масса изделий. Кроме того, используя среднюю плотность, определяют пористость камня и некоторые другие показатели. Особенно важное значение имеет это свойство для горных пород, используемых при производстве стеновых материалов, где значение этого показателя не должно превышать 2100 кг/м3.
Для определения средней плотности берут пять образцов кубической формы с размером ребра 40—50 мм или цилиндры диаметром и высотой 40—50 мм. Каждый образец очищают щеткой от рыхлых частиц и высушивают до постоянной массы, после чего взвешивают на настольных (гирных) или циферблатных весах. Затем измеряют размеры кубов или цилиндров камня и вычисляют объемы образцов.
Среднюю плотность каждого образца вычисляют по формуле, приведенной в § 2. Средняя плотность горной породы будет средним арифметическим результатом определения этой характеристики для пяти образцов. Значения средней плотности у наиболее распространенных видов облицовочного камня СНГ даны в приложении.
Среднюю плотность сыпучих (рыхлых) материалов (цемента, извести, песка, гравия, щебня) называют насыпной средней плотностью (прежнее название – насыпная объемная масса). В объем сыпучих материалов включают не только объем пор в самом материале, но и пустот между зернами или кусками материала.
Таблица 1. Плотность материалов в воздушно-сухом состоянии
Материалы | Значение плотности, кг/м3 | Материалы | Значение плотности, кг/м3 | ||
истинной | средней | истинной | средней | ||
Свинец | 11300—11400 | 11300—11400 | Известняк плотный | 2400—2600 | 2100—2400 |
Медь | 8300—8900 | 8300—8900 | Песок кварцевый | 2600—2700 | ,1400—1900 |
Сталь | 7800—7900 | 7800—7850 | Стекло строительное | 3000 | 2500—3000 |
Чугун | 7800 | 6900—7400 | Цемент | 3000—3100 | 800—1300 |
Алюминиевые сплавы | 2800 | 2700—2800 | Бетон тяжелый | 2600—2900 | 1800—2500 |
Раствор строитель ный | 2500—2900 | 1300—2200 | |||
Базальт | 3300 | 2700—3200 | |||
Габбро | 3200 | 2800—3200 | Гравий | 2600—2800 | 1400—1600 |
Мрамор | 3000 | 2700—2800 | Кирпич глиняный | 2500—2800 | 1600—1900 |
Гранит | 2600—2900 | 2600—2700 | Минеральная вата | 2800 | 75—400 |
Туф | 2200—2800 | 1000—2200 | Сосна | 1600 | 500—600 |
Ракушечник | 2650—2750 | 1400—2200 |
Примечание. Для сыпучих (рыхлых) материалов: песка, цемента, гравия приведена насыпная средняя плотность.
Плотность строительных материалов.
Сайт строителя
Плотность строительных материалов. Плотность может быть истинной, средней, насыпной, относительной.
- Истинная плотностью строительных материалов.
- Под истинной плотностью строительных материалов. (кг/м куб.) понимают массу единицы объема абсолютно плотного материала без трещин, пор и пустот.
Истинная плотность для основных строительных материалов следующая:
- сталь, чугун 7800…7900 кг/м3;
- портландцемент 2900…3100 кг/м3;
- гранит 2700…2800 кг/м3;
- песок кварцевый 2600…2700 кг/м3;
- кирпич керамический 2500…2800 кг/м3;
- стекло 2500…3000 кг/м3;
- известняк 2400…2600 кг/м3;
- древесина 1500…1600 кг/м3.
- Средняя плотность строительных материалов
- Это масса единицы объема материла или изделия в естественном состоянии, то есть с пустотами и порами. Средняя плотность одного и того же материала может быть разной в зависимости от пористости и пустотности. Сыпучие материалы (цемент, щебень, песок и др.) характеризуются насыпной плотностью -отношением массы зернистых и порошкообразных материалов в свободном без уплотнения насыпном состоянии ко всему занимаемому ими объему, включая пространство между частицами.
От плотности строительного материала в значительной степени зависят его прочность, теплопроводность и другие свойства. Этими данными пользуются при определении толщины ограждающих конструкций отапливаемых зданий, размера строительных конструкций, расчетах транспортных средств и др. Значения средней плотности строительных материалов находятся в широких пределах.
Средняя плотность для некоторых строительных материалов следующая:
- сталь — 7800…7850 кг/м3;
- гранит — 2600…2800 кг/м3;
- бетон тяжелый — 1800…2500 кг/м3;
- кирпич керамический — 1600. ..1800 кг/м3;
- песок -1450…1650 кг/м3;
- вода — 1000 кг/м3;
- бетон легкий — 500…1800 кг/м3;
- керамзит -300…900 кг/м3;
- сосна — 500…600 кг/м3;
- минеральная вата — 200…400 кг/м3;
- поропласты -20…100 кг/м3.
Плотность материала зависит от его пористости и влажности. С увеличением влажности плотность материала увеличивается.
- Относительная плотность строительных материалов
- Это степень заполнения веществом объема материала. Относительную плотность выражают отвлеченным числом или в процентах.
Пористость строительного материала характеризует объем, занимаемый в нем порами — мелкими ячейками, заполненными воздухом. Мелкие поры, заполненные воздухом, придают строительным материалам теплоизоляционные свойства. По величине пористости можно судить о примерной прочности, плотности, водопоглощении, долговечности и др. Для конструкций, от которых требуется высокая прочность или водонепроницаемость, используют плотные материалы, для стен зданий используют материалы со значительной пористостью. Такие материалы обладают хорошими теплоизоляционными и звукопоглощающими свойствами.
Для рыхлых материалов при расчетах учитывают насыпную объемную массу. Пористость и относительная плотность в значительной степени определяют эксплуатационные качества материалов (прочность, водопоглощение, морозостойкость, теплопроводность). Значение показателя пористости строительных материалов колеблется от О (стекло, сталь) до 90 % (минеральная вата).
Пустотность строительного материала представляет собой количество пустот, образующихся между зернами рыхлонасыпного материала. Выражается в процентах по отношению ко всему занимаемому объему. Этот показатель важен для керамзита, песка, щебня при изготовлении бетона. В некоторых строительных материалах (кирпич, панели) имеются полости, также образующие пустоты. Пустотность пустотелого кирпича составляет от 15 до 50 %, песка и щебня — 35…45 %.
Свойства строительных материалов.
Классификация строительных материалов
- Классификация и свойства строительных материалов.
- Классификация строительных материалов.
- Свойства строительных материалов.
- Физические свойства строительных материалов.
- Гидрофизические свойства строительных материалов.
- Теплофизические свойства строительных материалов.
- Механические свойства строительных материалов.
- Технологические и акустические свойства строительных материалов.
- Химические свойства строительных материалов.
Плотность воды | Глава 3: Плотность
- Скачать
- Электронная почта
- Распечатать
- Добавить в закладки или поделиться
Тебе это нравится? Не нравится ? Пожалуйста, найдите время, чтобы поделиться с нами своими отзывами. Спасибо!
Урок 3.
3
Основные понятия
- Жидкости, как и твердые тела, также имеют собственную плотность.
- Объем жидкости можно измерить непосредственно мерным цилиндром.
- Молекулы разных жидкостей имеют разный размер и массу.
- Масса и размер молекул в жидкости, а также то, насколько плотно они упакованы вместе, определяют плотность жидкости.
- Как и твердое тело, плотность жидкости равна массе жидкости, деленной на ее объем; Д = м/об.
- Плотность воды 1 грамм на кубический сантиметр.
- Плотность вещества одинакова независимо от размера образца.
Резюме
Учащиеся измеряют объем и массу воды, чтобы определить ее плотность. Затем они измеряют массу различных объемов воды и обнаруживают, что плотность всегда одинакова. Учащиеся строят график зависимости объема и массы воды.
Цель
Учащиеся смогут измерить объем и массу воды и рассчитать ее плотность. Учащиеся смогут объяснить, что, поскольку любой объем воды всегда имеет одинаковую плотность при данной температуре, эта плотность является характерным свойством воды.
Оценка
Загрузите лист с заданиями учащегося и раздайте по одному учащемуся, если это указано в задании. Рабочий лист будет служить компонентом «Оценить» каждого плана урока 5-E.
Безопасность
Убедитесь, что вы и ваши ученики носите подходящие защитные очки.
Материалы для каждой группы
- Градуированный цилиндр, 100 мл
- Вода
- Весы в граммах (могут измерять более 100 г)
- Пипетка
Демонстрационные материалы
- Вода
- Два одинаковых ведра или больших контейнера
Проведите демонстрацию, чтобы представить идею плотности воды.
Материалы
- Вода
- Два одинаковых ведра или больших контейнера
Подготовка учителей
Наполните одно ведро наполовину, а в другое добавьте примерно 1 стакан воды.
Процедура
- Выберите ученика, который поднимет оба ведра с водой.
- Спросите у студента-добровольца, какое ведро имеет большую массу.
Ожидаемые результаты
Ведро, в котором больше воды, имеет большую массу.
Спросите студентов:
- В уроках 3.1 — Что такое плотность? и 3.2 — Метод вытеснения воды, вы нашли плотность твердых тел, измерив их массу и объем. Как вы думаете, может ли жидкость, например вода, иметь плотность?
- Учащиеся должны понять, что вода имеет объем и массу. Поскольку D=m/v, вода также должна иметь плотность.
- Как вы думаете, можно найти плотность жидкости, такой как вода?
- Не ожидается, что учащиеся смогут полностью ответить на этот вопрос на данном этапе. Он задуман как повод к расследованию. Но учащиеся могут понять, что сначала им нужно каким-то образом найти массу и объем воды.
- Могут ли маленькое и большое количество воды, поднятые вашим одноклассником, иметь одинаковую плотность?
- Учащиеся могут указать, что ведро с большим количеством воды имеет большую массу, но больший объем. Ведро с меньшей массой имеет меньший объем. Поэтому возможно, что разное количество воды может иметь одинаковую плотность.
Раздайте каждому учащемуся лист с заданиями.
Учащиеся записывают свои наблюдения и отвечают на вопросы о задании в листе задания. Разделы «Объясните это с помощью атомов и молекул» и «Воспримите это» в листе с заданиями будут выполняться в классе, в группах или индивидуально в зависимости от ваших инструкций. Посмотрите на версию листа с заданиями для учителя, чтобы найти вопросы и ответы.
Обсудите с учащимися, как найти объем и массу воды.
Скажите учащимся, что они попытаются определить плотность воды.
Спросите студентов:
- Какие две вещи нужно знать, чтобы найти плотность воды?
- Учащиеся должны понимать, что им нужны как объем, так и масса образца воды, чтобы найти ее плотность.
- Как можно измерить объем воды?
- Предложите учащимся использовать мерный цилиндр для измерения объема в миллилитрах. Напомните учащимся, что каждый миллилитр равен 1 см 3 .
- Как можно измерить массу воды?
- Предложите учащимся использовать весы для измерения массы в граммах. Скажите учащимся, что они могут найти массу, взвесив воду. Однако, поскольку вода является жидкостью, она должна находиться в каком-то контейнере. Таким образом, чтобы взвесить воду, они также должны взвесить контейнер. Объясните учащимся, что им придется вычесть массу пустого мерного цилиндра из массы цилиндра и воды, чтобы получить массу только воды.
Предложите учащимся найти массу различных объемов воды, чтобы показать, что плотность воды не зависит от размера образца.
Вопрос для расследования
Имеют ли разное количество воды одинаковую плотность?
Материалы для каждой группы
- Градуированный цилиндр, 100 мл
- Вода
- Весы в граммах (могут измерять более 100 г)
- Пипетка
Процедура
- Найдите массу пустого мерного цилиндра. Запишите массу в граммах в таблице на рабочем листе.
Налейте 100 мл воды в мерный цилиндр. Постарайтесь быть максимально точным, убедившись, что мениск находится прямо на отметке 100 мл. Используйте пипетку, чтобы добавить или удалить небольшое количество воды.
- Взвесьте мерный цилиндр с водой. Запишите массу в граммах.
- Найдите массу только воды, вычитая массу пустого градуированного цилиндра. Запишите массу 100 мл воды в таблицу.
- Используйте массу и объем воды для расчета плотности. Запишите плотность в г/см 3 в таблице.
- Сливайте воду, пока в мерном цилиндре не будет 50 мл воды. Если вы случайно вылили слишком много, добавляйте воду, пока не дойдете до 50 мл.
Найдите массу 50 мл воды. Запишите массу в лист активности. Рассчитайте и запишите плотность.
- Затем слейте воду, пока в мерном цилиндре не будет 25 мл воды. Найдите массу 25 мл воды и запишите ее в таблицу. Рассчитайте и запишите плотность.
Таблица 1. Нахождение плотности различных объемов воды. Объем воды 100 миллилитров 50 миллилитров 25 миллилитров Масса мерного цилиндра + вода (г) Масса пустого мерного цилиндра (г) Масса воды (г) Плотность воды (г/см 3 ) Ожидаемые результаты
Плотность воды должна быть близка к 1 г/см 3 . Это верно для 100, 50 или 25 мл.
Спросите студентов:
- Посмотрите на свои значения плотности на диаграмме. Одинакова ли плотность различных объемов воды?
- Помогите учащимся увидеть, что большинство различных значений плотности близки к 1 г/см 3 . Они могут задаться вопросом, почему не все их значения точно равны 1 г/см 3 . Одной из причин может быть неточность измерения. Другая причина заключается в том, что плотность воды меняется в зависимости от температуры. Вода имеет наибольшую плотность при 4 °C и при этой температуре имеет плотность 1 г/см 3 . При комнатной температуре, около 20–25 °C, плотность составляет около 0,99 г/см 3 .
- Какова плотность воды в г/см3?
- Ответы учащихся могут различаться, но в основном их значения должны быть около 1 г/см 3 .
Предложите учащимся начертить свои результаты.
Помогите учащимся построить график данных на листе с заданиями. По оси x должен быть объем, а по оси y масса.
Когда учащиеся наносят свои данные на график, должна быть прямая линия, показывающая, что при увеличении объема масса увеличивается на ту же величину.
Обсудите наблюдения учащихся, данные и графики.
Спросите студентов:
- Используйте свой график, чтобы найти массу 40 мл воды. Какова плотность этого объема воды?
- Масса 40 мл воды составляет 40 грамм. Поскольку D = m/v и mL = см 3 , плотность воды равна 1 г/см 3 .
- Выберите объем от 1 до 100 мл. Используйте свой график, чтобы найти массу. Какова плотность этого объема воды?
- Независимо от того, весят ли ученики 100, 50, 25 мл или любое другое количество, плотность воды всегда будет равна 1 г/см 3 .
Скажите учащимся, что плотность – это характерное свойство вещества. Это означает, что плотность вещества одинакова независимо от размера образца.
Спросите студентов:
- Является ли плотность характерным свойством воды? Откуда вы знаете?
- Плотность является характеристическим свойством воды, поскольку плотность любой пробы воды (при одной и той же температуре) всегда одинакова. Плотность 1 г/см 3 .
Объясните, почему плотность пробы воды любого размера всегда одинакова.
Спроецируйте изображение Плотность воды.
Молекулы воды имеют одинаковую массу и размер. Молекулы воды также упакованы довольно близко друг к другу. Они упакованы одинаково во всей пробе воды. Итак, если объем воды имеет определенную массу, удвоенный объем будет иметь удвоенную массу, трехкратный объем будет иметь трехкратную массу и т. д. Независимо от того, какой размер пробы воды вы измеряете, соотношение между массой и объемом всегда будет одинаковым. Поскольку D=m/v, плотность одинакова для любого количества воды.
Проект анимации «Жидкая вода».
Молекулы воды всегда в движении. Но в среднем они упакованы везде одинаково. Следовательно, соотношение между массой и объемом одинаково, что делает плотность одинаковой. Это верно независимо от размера выборки или места, откуда вы ее выбираете.
Предложите учащимся подумать, равна ли плотность большого куска твердого вещества плотности меньшего куска.
Дайте учащимся время рассчитать плотность каждого из трех образцов, нарисованных на листе с заданиями, и ответить на соответствующие вопросы.
Спросите студентов:
- Плотность жидкости не зависит от размера образца. Может ли это быть верно и для твердых тел? Рассчитайте плотность каждого из трех образцов, чтобы выяснить это.
- Да. Плотность твердого вещества одинакова независимо от размера образца.
- Образец А имеет массу 200 г. Какова плотность образца А?
- Д = м/об
- D = 200 г/100 см 3
- D = 2 г/см 3
- Если вы разрежете образец A пополам и посмотрите только на одну половину, вы получите образец B. Какова плотность образца B?
- Если учащиеся не знают, что такое масса, скажите им, что это половина массы образца A. Поскольку образец A весит 200 г, образец B составляет половину объема и, следовательно, половину массы (100 г).
- Д = м/об
- D = 100 г/50 см 3
- D = 2 г/см 3
- Если вы разрежете образец B пополам, вы получите образец C. Какова плотность образца C?
- Д = м/об
- D = 50 г/25 см 3
- D = 2 г/см 3
Как усреднить плотность
Обновлено 22 декабря 2020 г.
Кевин Бек
Плотность в физике — это мера количества чего-то, что существует в данном физическом пространстве (объеме). В большинстве случаев под «плотностью» принято понимать «плотность массы», но как понятие оно просто описывает, насколько тесно что-то находится.
Плотность населения Гонконга, например, чрезвычайно высока, тогда как плотность населения Сибири чрезвычайно низка. Но в каждом случае «люди» являются предметом анализа.
Для веществ, состоящих из одного элемента в некотором количестве (например, грамм чистого золота или серебра) или однородной смеси элементов (например, литр дистиллированной воды, который включает водород и кислород в известном фиксированном соотношении ), можно предположить, что значимых изменений плотности в образце нет.
Это означает, что если плотность 60-килограммового однородного объекта перед вами равна 12 кг/л, то любая выбранная малая часть объекта должна иметь это значение своей плотности.
Определение плотности
Плотность обозначается греческой буквой ро (ρ) и представляет собой просто массу m , деленную на объем V . Единицы СИ — кг/м 3 , но г/мл или г/см3 (1 мл = 1 см3) являются более распространенными единицами измерения в лабораторных условиях. Эти единицы фактически были выбраны для определения плотности воды равной 1,0 при комнатной температуре.
- Плотность повседневных материалов: Золото, как и следовало ожидать, имеет очень высокую плотность (19,3 г/куб.см). Хлорид натрия (поваренная соль) составляет 2,16 г/куб.см.
Примеры средней плотности
В зависимости от типа присутствующего вещества или веществ существует несколько подходов к решению проблемы плотности смеси.
Самый простой вариант — это когда вам дают набор из N объектов и просят определить среднюю плотность объектов в наборе. Такого рода примеры могут возникать в ситуациях, когда элементы набора относятся к одному и тому же базовому «типу» (например, люди в Англии, деревья в заданном лесу в Монтане, книги в городской библиотеке в Теннесси), но могут очень сильно различаться. в рассматриваемой характеристике (например, вес, возраст, количество страниц).
ПРИМЕР: Вам даны три блока неизвестного состава, которые имеют следующие массы и объемы:
- Камень A: 2250 г, 0,75 л
- Камень B: 900 г, 0,50 л
- Камень C : 1850 г, 0,50 л
а) Рассчитайте среднее значение плотности камней в наборе.
Это делается путем определения плотности каждого камня, их сложения и деления на общее количество камней в наборе:
\frac{(2250/0,75) + (900/0,50) + (1650/0,60)}{3} = \frac{(3000 + 1800 + 3700)}{3}=2833\text{ г/л}
б) Рассчитайте среднюю плотность комплекса горных пород в целом.