Содержание
400 мм при высоте этажа до 4 м — м3
ФГИС ЦС
Вход/Регистрация
Утверждены
Приказом Министерства строительства
и жилищно-коммунального хозяйства
Российской Федерации
от 26 декабря 2019 г. № 876/пр
Кладка стен из газобетонных блоков на клее без облицовки толщиной: 400 мм при высоте этажа до 4 м — м3
Состав работ:
1. | Выгрузка материалов. |
2. | Подъем материалов к месту производства работ. |
3. | Перемещение материалов на расстояние до 30 м. |
4. | Устройство и разборка подмостей. |
5. | Подготовка основания под укладку. |
6. | Огрунтовка поверхности. |
7. | Установка порядовки и натягивание причалки. |
8. | Распиловка блоков. |
9. | Приготовление клеевого раствора. |
10. | Укладка блоков с устройством ниш отопления и архитектурных деталей. |
11. | Установка анкеров в блоки. |
Ресурсы:
Код | Наименование | К-во | Ед. |
---|---|---|---|
1-100-31 | Затраты труда рабочих (Средний разряд — 3,1) | 3.65 | чел.-ч |
2 | Затраты труда машинистов | 0.13 | чел.-ч |
91.05.01-016 | Краны башенные, грузоподъемность 5 т | 0.03 | маш.-ч |
91.05.05-015 | Краны на автомобильном ходу, грузоподъемность 16 т | 0.05 | маш.-ч |
91.14.02-001 | Автомобили бортовые, грузоподъемность до 5 т | 0.05 | маш.-ч |
01.7.03.01-0001 | Вода | 0.00414 | м3 |
08.4.03.03-0031 | Сталь арматурная, горячекатаная, периодического профиля, класс А-III, диаметр 10 мм | 0.00078 | т |
14.4. 01.01-0003 | Грунтовка ГФ-021 | 0.000077 | т |
05.2.02.09 | Блоки из ячеистых бетонов стеновые | 1.01 | м3 |
14.1.06.02 | Состав клеящий | 20.5 | кг |
Добавьте в избранное
Вы можете сравнивать 2 или 3 расценки из одной базы.
Перейдите на страницу нужной расценки и нажмите кнопку «Добавить» — будет сформирована кнопка на страницу с результатом.
Все Расценки Таблицы
Таблица 08-03-004. Кладка стен из газобетонных блоков на клее без облицовки
Номер расценки | Наименование и характеристика работ и конструкций | чел./ч | маш./ч |
---|---|---|---|
ФЕР08-03-004-01 | Кладка стен из газобетонных блоков на клее без облицовки толщиной: 400 мм при высоте этажа до 4 м — м3 | 3.65 | 0.13 |
ФЕР08-03-004-02 | Кладка стен из газобетонных блоков на клее без облицовки толщиной: 400 мм при высоте этажа свыше 4 м — м3 | 2. 81 | 0.13 |
ФЕР08-03-004-03 | Кладка стен из газобетонных блоков на клее без облицовки толщиной: 500 мм при высоте этажа до 4 м — м3 | 4.47 | 0.13 |
ФЕР08-03-004-04 | Кладка стен из газобетонных блоков на клее без облицовки толщиной: 500 мм при высоте этажа свыше 4 м — м3 | 3.39 | 0.13 |
91.14.02-001 | Автомобили бортовые, грузоподъемность до 5 т |
91.05.05-015 | Краны на автомобильном ходу, грузоподъемность 16 т |
91.05.01-017 | Краны башенные, грузоподъемность 8 т |
91.01.01-035 | Бульдозеры, мощность 79 кВт (108 л.с.) |
91.06.06-048 | Подъемники одномачтовые, грузоподъемность до 500 кг, высота подъема 45 м |
01.7.04.01-0001 | Доводчик дверной DS 73 BC «Серия Premium», усилие закрывания EN2-5 |
20.3.03.07-0093 | Светильник потолочный GM: A40-16-31-CM-40-V с декоративной накладкой |
01. 7.03.01-0001 | Вода |
04.3.01.12-0111 | Раствор готовый отделочный тяжелый, цементно-известковый, состав 1:1:6 |
14.5.01.10-0001 | Пена для изоляции № 4 (для изоляции 63-110 мм) |
Тестируем ФСНБ-2022
API расценок ФГИС ЦС
ФСНБ-2020 включая дополнение №9 (приказы Минстроя России от 20.12.2021 № 961/пр, 962/пр) действует с 01.02.2022
Нашли ошибку? Напишите в Техподдержку
Перетирка и покраска монолитных стен
Перетирка и покраска монолитных стен
ПОКРАСКА БЕТОННЫХ СТЕН. ПОДГОТОВКА БЕТОННЫХ СТЕН ПОД ПОКРАСКУ.
Вероятнее всего, под бетонными стенами, мы подразумеваем монолитные или выложенные из штучных кладочных материалов (кирпич, пенобетон, гипсоблоки и т. д.) стены, оштукатуренные специальными растворами.
Учимся правильно штукатурить стены из бетона
Сухие листы укладывать достаточно просто, а вот мокрый раствор считается одним из трудоемких, хотя качество такой штукатурки считается идеальным. Синтетика более пластична и проста в монтаже, но здесь есть определенные нюансы, о которых вы узнаете позже.
Методы предотвращения повторного трещинообразования на оштукатуренных или прошпаклеванных поверхностях
Трещины возникают в сопряжениях разнородных материалов: в узлах примыкания оконных и дверных коробок и перегородок к стенам. Трещины связаны с усадкой отделочных материалов, с температурными и другими деформациями. Например, штукатурки на цементном вяжущем, нанесенные на бетонную стену или гипсовую перегородку, при схватывании дают усадку и покрываются сеткой мелких трещин. Появления таких трещин можно избежать, если использовать безусадочные штукатурные и шпаклевочные смеси на гипсовом или полимерном вяжущем.
1. Отшлифуйте поверхность
Вы должны приступить к покраске только тогда, когда поверхность будет гладкой, и только в этом случае стены или деревянные предметы можно окрасить идеально. Некоторые профессионалы предпочитают использовать шлифовальную машину, чтобы не тратить на шлифовку много времени. Заполните неровности шпаклевкой или герметиком и разгладьте утолщения возле отверстий для гвоздей. Шлифование также устранит заусенцы и шероховатости в вашей отделке.
СТЕНЫ — ЦЕНЫ НА СТРОИТЕЛЬНЫЕ РАБОТЫ:
ЕДИНИЧНЫЕ РАСЦЕНКИ
Синтетические моющиеся обои также имеют плотную консистенцию, поэтому поверхность под них необходимо тщательно проклеивать. Если при составлении сметы требуется оценить затраты на оклейку стен стеклообоями под покраску или другими материалами на бумажной или тканевой основе обычно применяют нормативы ГЭСН (ФЕР/ТЕР) 15-06-002 и 15-06-003 с заменой материалов, покраску расценивают по ГЭСН (ФЕР/ТЕР) 15-06-004. Покрытие под любые обои должно быть хорошо подготовлено, а работы – производится аккуратно и профессионально.
Популярные сообщения из этого блога
Размеры кирпичных простенков
Способ кирпичной кладки Для кирпичного простенка используется стандартный кирпич, размеры которого определены ГОСТом – 65*120*250 миллиметров. Высота ребра полуторного – 88, а двойного 140. Традиционно используется кладка в полкирпича. Этот вид кладки подразумевает укладывание материала в одну линию. Если требуется повысить шумоизоляцию, то можно увеличить стену до 25 миллиметров и укладывать в целый кирпич. Но это значительно удорожит постройку. Иногда, в целях экономии, кирпич ставят на ребро, что позволяет сохранить размеры и уменьшить расход материала. Однако такие простенки ненадежны и слишком тонкие – от 6,5 до 8,8 сантиметров. Кирпич: стандартные размеры Прежде чем приступать к описанию способов расчетов кирпичной кладки, следует разобраться со стандартными габаритами этого материала.
Далее…
Цвет стен в классе по санпину
1. ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ 1.1. Настоящие Санитарные правила и нормы (далее — Санитарные правила)предназначены для предотвращения неблагоприятного воздействия на организмшкольников вредных факторов, сопровождающих их учебную деятельность иопределяют санитарно-гигиенические тре бования к: Изменения в СанПин для школ 2015 Стандарты Образования04.01.2016 Изменения в СанПин для школ 20152016-01-08T02:46:56+00:00Образовательное право 23 комментария С 02 января 2016 года российские школы начнут жить с изменениями, связанными с условиями, организацией обучения и содержанием общеобразовательных учреждений. Изменения в СанПин для школ 2015. Рекомендации по выбору: Жалюзи для класса – в обычный класс лучше повесить жалюзи из полупрозрачных тканей, наиболее подходящие по цвету.В компьютерный кабинет оптимально подойдут светонепроницаемые ткани для защиты от бликов на мониторе.
Далее…
Как скрепляются панели в панельном доме
Преимущества и недостатки Компоненты панельного дома, представляющие собой крупные железобетонные плиты, изготавливают на домостроительных комбинатах. По качеству любые изделия, изготовленные в заводских условиях с должным техконтролем, всегда будут отличаться в положительную сторону от изделий, произведённых прямо на стройплощадке. Как осуществляется транспортировка и хранение железобетонных изделий Транспортировку ЖБИ обычно выполняют на грузовых машинах. Крупногабаритные ЖБИ перевозят на специальных транспортных средствах. Стеновые панели доставляют на панелевозах. Разгружают ЖБИ с помощью крана. Складирование ЖБИ выполняется согласно требованиям ГОСТ и ТУ. Железобетонные изделия складывают в штабели монтажными петлями вверх. Их положение должно соответствовать условиям установки при строительных работах.
Далее…
ИЗОЛЯЦИЯ БЕТОННЫХ СТЕНОВ — NCMA
ТЭК 06-11А
ВВЕДЕНИЕ
Разнообразие стеновых конструкций из бетонной кладки предусматривает ряд изоляционных стратегий, в том числе: внутреннюю изоляцию, изолированные полости, изоляционные вставки, вспененную изоляцию на месте, гранулированные заполнители в пространствах блочного ядра и системы внешней изоляции. Каждая конструкция каменной стены имеет свои преимущества и ограничения в отношении каждой из этих стратегий изоляции. Выбор утеплителя будет зависеть от желаемых тепловых свойств, климатических условий, простоты строительства, стоимости и других конструктивных критериев.
Обратите внимание, что положение изоляции внутри стены может повлиять на положение точки росы и, следовательно, на потенциал образования конденсата. См. TEK 6-17A, Контроль конденсации в бетонных стенах (ссылка 1) для получения более подробной информации. Точно так же некоторые изоляционные материалы могут действовать как воздушный барьер, если они установлены непрерывно и с герметичными соединениями. Дополнительную информацию см. в TEK 6-14A «Контроль утечки воздуха в бетонных кирпичных стенах» (ссылка 2).
ТЕПЛОВЫЕ ХАРАКТЕРИСТИКИ КИРПИЧНОЙ КЛАДКИ
Тепловые характеристики каменной стены зависят от ее стационарных тепловых характеристик (описываемых значением R или U-фактором), а также от характеристик тепловой массы (теплоемкости) стены. Стационарное состояние и массовые характеристики зависят от размера и типа каменной кладки, типа и расположения изоляции, отделочных материалов и плотности кладки. Конструкции бетонной кладочной смеси с более низкой плотностью приводят к более высоким значениям R (т. Е. Более низким коэффициентам U), чем бетоны с более высокой плотностью.
Тепловая масса описывает способность материалов накапливать тепло. Из-за своей сравнительно высокой плотности и удельной теплоемкости кирпичная кладка обеспечивает очень эффективное накопление тепла. Кирпичные стены остаются теплыми или прохладными еще долгое время после отключения отопления или кондиционирования воздуха. Это, в свою очередь, эффективно снижает нагрузку на отопление и охлаждение, смягчает колебания температуры в помещении и смещает нагрузку на отопление и охлаждение на непиковые часы. Благодаря значительным преимуществам присущей бетонной кладке тепловой массы, здания из бетонной кладки могут обеспечивать характеристики, аналогичные каркасным зданиям с более сильной изоляцией.
Преимущества тепловой массы учтены в требованиях энергетического кодекса, а также в сложных компьютерных моделях. Энергетические кодексы и стандарты, такие как Международный кодекс энергосбережения (IECC) (ссылка 5) и Стандарт энергоэффективности для зданий, кроме малоэтажных жилых зданий, стандарт ASHRAE/IESNA 90.1 (сноска 6), допускают, чтобы стены из бетонной кладки имели меньше изоляции, чем каркасные стеновые системы для удовлетворения энергетических потребностей.
Несмотря на то, что тепловой массы и присущего бетонной кладке коэффициента R/U может быть достаточно для удовлетворения требований энергетического кодекса (особенно в более теплом климате), стены из бетонной кладки часто требуют дополнительной изоляции. Когда они это делают, существует множество вариантов изоляции бетонной каменной конструкции. При необходимости бетонная кладка может обеспечить стены со значениями R, которые превышают минимальные нормы (см. ссылки 3, 4). Однако для общей экономии проекта промышленность предлагает параметрический анализ для определения разумных уровней изоляции для элементов ограждающих конструкций.
Эффективность тепловой массы зависит от таких факторов, как климат, конструкция здания и положение изоляции. Влияние положения изоляции обсуждается в следующих разделах. Однако обратите внимание, что в зависимости от выбранного метода соответствия нормам положение изоляции может не отражаться в конкретных нормах или стандартах.
Существует несколько методов, позволяющих выполнить энергетические требования IECC. Один из вариантов, предписывающие значения R IECC (Таблица IECC 502.2 (1)) требует «непрерывной изоляции» на бетонной кладке и других массивных стенах. Это относится к изоляции, не прерываемой обрешеткой или перемычками бетонных блоков кладки. Примеры включают жесткую изоляцию, приклеенную к внутренней части стены с обшивкой и гипсокартоном, нанесенным поверх изоляции, непрерывную изоляцию в стенах с полостью каменной кладки, а также наружную изоляцию и системы отделки. Если стена из бетонной кладки не будет иметь непрерывной изоляции, существует несколько других вариантов соответствия требованиям IECC: стены из бетонной кладки не должны иметь сплошную изоляцию, чтобы соответствовать требованиям IECC. См. TEK 6-12C, Международный кодекс энергосбережения и бетонная кладка, и TEK 6-4A, Соответствие требованиям энергетического кодекса с использованием COMcheck (ссылки 7, 8).
ВНУТРЕННЯЯ ИЗОЛЯЦИЯ
Внутренняя изоляция относится к изоляции, нанесенной на внутреннюю сторону бетонной кладки, как показано на рис. 1. Изоляция может быть жесткой плитой (экструдированный или вспененный полистирол или полиизоцианурат), напыляемой полиуретановой пеной с закрытыми порами, ячеистой стекло, волокнистая вата или волокнистая вдуваемая изоляция (обратите внимание, однако, что волокнистая изоляция восприимчива к влаге). Внутренняя поверхность стен обычно отделана гипсокартоном или панелями.
Внутренняя изоляция допускает обнажение каменной кладки снаружи, но изолирует кладку от внутренней части здания и, таким образом, может снизить воздействие тепловой массы.
При жесткой изоляции из плит клей используется для временного удержания изоляции на месте, пока применяются механические крепления и защитная отделка. Можно использовать обрешетку и держать ее на расстоянии от лицевой стороны каменной кладки с помощью прокладок. Пространство, созданное распорками, обеспечивает влагозащиту, а также удобное и экономичное расположение для дополнительной изоляции, проводки или труб.
В качестве альтернативы можно установить деревянную или металлическую обрешетку с утеплителем между обшивками. Размер обрешетки определяется типом изоляции и требуемым коэффициентом теплопередачи. Поскольку обрешетка проникает в изоляцию, при анализе тепловых характеристик стены необходимо учитывать свойства обшивки. Проникновение стали через изоляцию существенно влияет на термическое сопротивление, проводя тепло от одной стороны изоляции к другой. Несмотря на то, что он не такой проводящий, как металл, тепловое сопротивление древесины и площадь поперечного сечения проникновения деревянной обшивки следует учитывать при определении общих значений R. См. TEK 6-13A, Тепловые мосты в строительстве стен (ссылка 9).) Чтобы получить больше информации.
Пенополиуретан с закрытыми ячейками обычно укладывается между внутренней обшивкой. Пена наносится в виде жидкости и расширяется на месте. Надлежащее обучение помогает обеспечить качественную установку. Пена устойчива к пропусканию воздуха и водяного пара.
При использовании внутренней изоляции бетонная кладка может иметь как вертикальное, так и горизонтальное армирование с частичным или полным растворением без нарушения слоя изоляции.
Долговечность, устойчивость к атмосферным воздействиям и ударопрочность внешней стены остаются неизменными при добавлении внутренней изоляции. Ударопрочность внутренней поверхности определяется внутренней отделкой.
Рисунок 1—Примеры внутренней изоляции
ВСТРОЕННАЯ ИЗОЛЯЦИЯ
На рис. 2 показаны некоторые типичные встроенные изоляции в каменных стенах с одинарной кладкой. Интегральная изоляция относится к изоляции, помещенной между двумя слоями тепловой массы. Примеры включают изоляцию, размещенную в бетонных ядрах каменной кладки, и непрерывную изоляцию в стене с полостью каменной кладки (обратите внимание, что изолированная стена с полостью кладки также может рассматриваться как внешняя изоляция, если не учитывать тепловой эффект массы облицовки).
Со встроенной изоляцией часть тепловой массы (каменная кладка) находится в прямом контакте с воздухом в помещении, что обеспечивает превосходные преимущества по тепловой массе, при этом допуская открытую каменную кладку как снаружи, так и внутри.
Полые стены с несколькими витками содержат изоляцию между двумя витками каменной кладки. Непрерывная изоляция полости сводит к минимуму тепловые мосты. Ширину полости можно варьировать для достижения широкого диапазона значений R. Изоляция полости может быть жесткой плитой, напыляемой полиуретановой пеной с закрытыми порами или сыпучим наполнителем. Для дальнейшего повышения тепловых характеристик жилы резервного витка могут быть изолированы.
Когда в полости используется изоляция из жестких плит, сначала выполняется внутренняя кладка. Изоляция предварительно вырезается или надрезается производителем для облегчения размещения между стенными анкерами. Плитную изоляцию можно прикрепить с помощью клея или механических застежек. Плотные стыки между изоляционными плитами максимизируют тепловые характеристики и уменьшают утечку воздуха. В некоторых случаях стыки между досками заделываются расширяющимся валиком герметика, герметизируются или заклеиваются лентой, чтобы действовать как воздушный барьер.
Интегральная изоляция, помещаемая в сердцевины кирпичной кладки, обычно представляет собой вставки из формованного полистирола, пенопласта или гранулированного наполнителя из вспененного перлита или вермикулита. Что касается обрешетки, используемой для внутренней изоляции, то при определении тепловых характеристик стены необходимо учитывать тепловое сопротивление стенок бетонной кладки и любых залитых раствором ядер (см. TEK 6-2C, ссылка 3, для табличных значений R стены с теплоизоляцией). При использовании изоляции активной зоны изоляция должна занимать все незалитые пространства активной зоны (хотя некоторые жесткие вставки сконфигурированы для размещения арматурной стали и цементного раствора в одной ячейке).
Изоляция, вспененная на месте, устанавливается в ядрах каменной кладки после возведения стены. Установщик либо заполняет сердечники сверху стены, либо закачивает пену через небольшие отверстия, просверленные в кладке. Пены могут быть чувствительны к температуре, условиям смешивания и другим факторам. Поэтому следует тщательно следовать инструкциям производителей, чтобы избежать чрезмерной усадки из-за неправильного смешивания или укладки пены.
Вставки из полистирола могут быть помещены в ядра обычных каменных блоков или использованы в блоках специальной конструкции. Вставки доступны во многих формах и размерах, чтобы обеспечить диапазон R-значений и приспособиться к различным условиям строительства. В предварительно утепленной кладке вставки устанавливаются заводом-изготовителем. Также доступны вставки, которые устанавливаются на строительной площадке.
Бетонные блоки специальной конструкции могут включать ребра уменьшенной высоты для размещения вставок в ядрах. Такие полотна также уменьшают тепловые мостики через каменную кладку, поскольку уменьшенная площадь полотна обеспечивает меньшую площадь поперечного сечения для теплового потока через стену. Чтобы еще больше уменьшить тепловые мосты, некоторые производители разработали блоки бетонной кладки с двумя поперечными перемычками, а не с тремя.
Вертикальная и горизонтальная арматура, залитая цементным раствором в ядра бетонной кладки, может потребоваться для обеспечения прочности конструкции. Сердечники, подлежащие заливке, изолируют от стержней, подлежащих изоляции, путем нанесения раствора на перемычки, ограничивающие раствор. Гранулированная или пенопластовая изоляция помещается в незалитые ядра внутри стены. Затем определяется тепловое сопротивление на основе среднего значения R площади стены (см. TEK 6-2C, ссылка 3, для объяснения и примера расчета). Некоторые жесткие вставки предназначены для размещения арматурной стали и цементного раствора, чтобы обеспечить как тепловую защиту, так и конструкционные характеристики. При использовании вкладышей в конструкциях с цементным раствором должны быть соблюдены минимальные размеры пространства для цементного раствора, требуемые нормами (см. TEK 3-2A, ссылка 10).
Гранулированные наполнители укладываются в сердцевины кирпичной кладки по мере возведения стены. Обычно заливки заливают прямо из мешков в сердечники. Обычно происходит небольшое урегулирование, но оно оказывает относительно небольшое влияние на общую производительность. Гранулированные наполнители имеют тенденцию вытекать из любых отверстий в стеновой системе. Следовательно, дренажные отверстия должны быть снабжены антикоррозионными экранами внутри или фитилями, чтобы удерживать наполнитель и обеспечивать отвод воды. Пчелиные отверстия или другие зазоры в растворных швах должны быть заполнены. Кроме того, забуриваемые анкеры, размещаемые после изоляции, требуют специальных процедур установки, чтобы предотвратить потерю гранулированного наполнителя.
Рисунок 2 — Примеры интегральной изоляции
ВНЕШНЯЯ ИЗОЛЯЦИЯ
Внешние теплоизолированные каменные стены — это стены, которые имеют изоляцию на внешней стороне тепловой массы. В этих стенах непрерывная внешняя изоляция покрывает каменную кладку, сводя к минимуму эффект тепловых мостов. Это помещает тепловую массу внутрь изоляционного слоя. Внешняя изоляция удерживает кирпичную кладку в прямом контакте с кондиционированным воздухом внутри, обеспечивая наибольшую выгоду от тепловой массы из трех стратегий изоляции.
Внешняя изоляция также снижает потери тепла и движение влаги из-за утечки воздуха, когда стыки между плитами изоляции герметизированы. Внешняя изоляция сводит на нет эстетические преимущества открытой кладки. Кроме того, изоляция требует защитной отделки для поддержания долговечности, целостности и эффективности изоляции.
При устройстве наружной штукатурки применяется армирующая сетка для усиления отделочного покрытия, повышения трещиностойкости и ударопрочности. Для этого используется сетка из стекловолокна, коррозионностойкая плетеная сетка или металлическая решетка. После того, как сетка установлена, через изоляцию вставляются механические крепежные детали, которые надежно закрепляются в бетонной кладке. Механические застежки могут быть металлическими или нейлоновыми, хотя нейлон ограничивает потери тепла через застежки.
После механического крепления утеплителя и армирующей сетки к кладке на поверхность наносится шпателем финишное покрытие. Эта поверхность придает стене окончательный цвет и текстуру, а также обеспечивает устойчивость к атмосферным воздействиям и ударам.
Рисунок 3—Пример наружной изоляции
ПРИМЕНЕНИЕ НА НИЖНЕМ УРОВНЕ
В стенах из каменной кладки ниже уровня земли обычно используется конструкция стены с одинарной поперечиной, которая может обеспечивать внутреннюю, встроенную или внешнюю изоляцию.
Внешняя или встроенная изоляция эффективна для снижения внутренней температуры и смещения пиковых энергетических нагрузок. Типичная обшивка, используемая для внутренней изоляции, обеспечивает место для прокладки электрических и водопроводных линий, а также удобна для установки гипсокартона или другой внутренней отделки.
При использовании наружной или встроенной изоляции архитектурные блоки из бетонной кладки обеспечивают законченную внутреннюю поверхность. Использование гладких фасонных элементов в основании стены облегчает стяжку плиты. После отливки плиты к гладкому первому ряду можно приложить формовочную полосу, которая также служит дорожкой для электропроводки. Остальная часть стены может быть построена из гладких, разрезных, разрезных ребристых, шлифованных, ребристых или других архитектурных бетонных блоков.
Изоляция на внешней стороне нижележащих частей стены временно удерживается на месте с помощью клея до тех пор, пока не будет уложена засыпка. Та часть жесткой доски, которая выступает над землей, должна быть механически закреплена и защищена.
Каталожные номера
- Контроль конденсации в бетонных стенах, ТЭК 6-17А. Национальная ассоциация бетонщиков, 2000 г.
- Контроль герметичности стен из бетонной кладки, ТЭК 6-14А. Национальная ассоциация бетонщиков, 2011 г.
- R-значения и U-факторы одинарных стен из бетонной кладки Wythe, TEK 6-2C. Национальная ассоциация бетонщиков, 2013 г.
- R-значения стен из бетонной кладки Multi-Wythe, ТЭК 6-1С. Национальная ассоциация бетонщиков, 2013 г.
- Международный кодекс энергосбережения. Совет по международному кодексу, 2003, 2006 и 2009 гг.
- Стандарт энергоэффективности для зданий, кроме малоэтажных жилых зданий, стандарт ASHRAE/IESNA 90.1. Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха и Общество инженеров по освещению, 2001, 2004 и 2007 гг.
- Международный кодекс энергосбережения и бетонная кладка, TEK 6-12C. Национальная ассоциация бетонщиков, 2007 г.
- Соответствие требованиям энергетического кодекса с помощью COMcheck TEK 6-4A. Национальная ассоциация бетонщиков, 2007 г.
- Тепловые мосты в строительстве стен, ТЭК 6-13А. Национальная ассоциация бетонщиков, 1996 г.
- Заливка стен бетонной кладкой, ТЭК 3-2А. Национальная ассоциация бетонщиков, 2005 г.
.
.
.
NCMA TEK 6-11A, редакция 2010 г.
NCMA и компании, распространяющие эту техническую информацию, отказываются от какой-либо ответственности за точность и применение информации, содержащейся в этой публикации.
Заливка стен пеной| Журнал по бетонным конструкциям
- Главная >
Как >
Строительство >
- Заполнение стен пеной
Строительство
Опубликовано:
Идеальный утеплитель для каменной стены должен заполнить все доступное пространство и не оставить зазоров, через которые могли бы проникать шум или тепло.
Загрузите PDF-версию этой статьи. (144,33 КБ)
Идеальный утеплитель для каменной стены должен заполнить все доступное пространство и не оставить зазоров для проникновения шума или тепла. Он не вызывает коррозии и не выделяет токсичных химических веществ или твердых частиц внутрь здания. Его было бы легко установить и он стоил бы меньше, чем существующие методы. По этим определениям изоляция, вспененная на месте, очень близка к идеалу. Впрыскиваемая в ячейки блочной стены или в полость облицованной стены, пена заполняет все открытые пространства и может привести к значениям R до 20.
В настоящее время четыре компании продвигают эту систему в США. Они продают оборудование как системы «под ключ», а затем обучают своих клиентов правильному выполнению работы.
Правильное выполнение работы включает следующие этапы:
Оценка стены, чтобы определить, куда можно ввести пену, и как обеспечить заполнение пеной всех пустых ячеек, полостей и зазоров в стене
- Сверление инъекционных отверстий на одной стороне каждой стены для создания отверстий в ячейках блоков в стыках постели
- Впрыскивание пены во время наблюдения за переливом
- Проверка плотности пены ежечасно
- Очистка и исправление примерно через 48 часов
Вспененная на месте изоляционная система может гораздо более эффективно и полностью заполнить ячейки в неармированной однослойной блочной стене, чем альтернативы. Пенопласт не осядет и не вытечет, если в стене прорезать отверстие, и это не мешает работе каменщика.
Изоляция, вспениваемая на месте, одинаково хорошо работает для улучшения тепловых и акустических характеристик в новом или существующем строительстве. Единственным недостатком существующей конструкции является необходимость ремонта инъекционных отверстий, но этот метод гораздо менее трудоемок и намного эффективнее любого другого.
Большим преимуществом вспененной на месте системы является то, что она создает очень полное изоляционное заполнение зазоров в стене, значительное улучшение тепловых и звуковых характеристик по сравнению с полой стеной и даже небольшое преимущество по сравнению с гранулированными изоляционными заполнениями. .
Еще одним преимуществом, заявляемым некоторыми производителями, является повышение огнестойкости стен из пеноблоков.
Стоимость вспененной изоляции варьируется от 40 центов за квадратный фут стены до 1,40 доллара США.
Одним из больших преимуществ является то, что этот экологически чистый утеплитель не выделяет токсичных газов ни при монтаже, ни в процессе эксплуатации, а также не вызывает раздражения, как стекловолокно. Кроме того, он разлагается на азот в присутствии воды и солнечного света. Но это плохо работает на открытых пространствах.
Полые стены — еще одно хорошее применение. Полная система перепрошивки по-прежнему необходима. Изоляция, вспененная на месте, может создать некоторые проблемы с дренажем, и, если изоляция не является полностью закрытоячеистой, любое поглощение влаги снизит ее изоляционную эффективность.
Изоляция, вспениваемая на месте, все еще находится в зачаточном состоянии, поскольку ее используют в кирпичных стенах всего 10–15 лет. По мере его использования процесс будет совершенствоваться, а приложения расширяться. Некоторые разногласия также прояснятся по мере проведения исследований. Однако для многих применений этот процесс имеет явные преимущества и должен рассматриваться как одна из альтернатив изоляции для любого каменного здания.