Фундамент из полистиролбетона: Фундамент и стены из полистиролбетона – «БлокПластБетон»

Содержание

Дом из полистиролбетона. Фундамент и стены — Блоги

Фундамент – это основа любого дома. 50% (если не более) долговечности, надежности и сейсмоустойчивости здания зависят именно от него. Поэтому к выбору типа фундамента всегда следовало относиться с особым вниманием.

Почему следовало? Потому что с появлением технологии строительства из полистиролбетона ваш выбор стал фактически безграничным. Если для тяжелых кирпичных, бетонных или шлакоблочных стен требуются массивные виды фундамента, то дом из полистиролбетонных блоков (за счет меньшего веса конструкций) надежно устанавливается на мелкозаглубленный, легкий фундамент.

О преимуществах данного решения можно рассуждать долго, мы же перечислим только основные из них:

+  экономия — при возведении дома из полистиролбетона затраты на фундамент сокращаются до 5 раз по сравнению со строительством по другим технологиям

+  скорость – мелкозаглубленный фундамент не нуждается в выстаивании, строительство можно продолжать сразу после его закладки. Кроме того, сам фундамент закладывается гораздо быстрее

+  универсальность расположения – если грунт на участке обладает низкой несущей способностью, строительство коттеджа из камня, бетона или кирпича в подобных условиях невозможно. А вот дом из полистиролбетона можно возводить безо всяких опасений!

Начало сборки.

Технология строительства из полистиролбетонных блоков позволяет производить монтаж конструкций в любое время года. Полистиролбетон является морозоустойчивым материалом, полностью сохраняющим структуру при температуре от -70 до +70 градусов.

Первые этапы сборки предполагают гидроизоляцию фундамента, забивку арматуры на местах будущей заливки колон, заложение первого слоя стеновых блоков и монтаж панелей перекрытия пола.

В качестве перекрытий можно использовать любое покрытие, доступное по цене и обеспечивающее желаемый результат: деревянное балочное, бетонное плиточное или монолитное. Наиболее приятной стоимостью отличается покрытие из дерева, однако оно обладает низкой звукоизоляцией и может создать неравномерную нагрузку на стены. В свою очередь монолитное бетонное покрытие создает равномерную нагрузку на фундамент и стены (если речь идет о перекрытиях второго этажа), однако цена его значительно увеличивает стоимость строительства.

Оптимальным вариантом считается перекрытие из полистиролбетонных плит, которые обеспечивают прекрасную теплоизоляцию пола и простую укладку напольного покрытия, отличную звукоизоляцию (до 50 – 60 Дб на комнату) и равномерную нагрузку на фундамент и стены.

Все операции проводятся в точном соответствии с планом дома.

Стены.

Следующим этапом «собирается» коробка дома – укладываются блоки, заливаются колонны, устанавливаются перекрытия второго этажа (при строительстве двухэтажного дома).

Традиционное строительство (не только кирпичное, но и предполагающее облегченный бетон, такой как пеноблоки) ведется с применением цементного раствора. Подобный подход необходим из-за плохой геометрии кирпичей или блоков и необходимости выравнивания линии кладки, которая регулируется толщиной шва. Из-за этого шов может доходить до 10 мм – это не только способствует значительным расходам, но и до 30% снижает теплоизоляционные свойства стены, так как образуются, так называемые, «мостики холода»

Блоки из полистиролбетона (благодаря свойствам материала и технологии производства) обладают идеально ровными формами, а потому легко и быстро укладываются на специальный клей, который создает шов толщиной не более 4 мм.

Таким образом:

+  достигается большая устойчивость стен благодаря высокой плотности кладки

+  улучшается теплоизоляция благодаря отсутствию мостиков холода

+  расходы на «связующий состав» сокращаются до 70% по сравнению с другими технологиями строительства.

Согласно действующим нормам и СНиПам, дополнительная теплоизоляция для домов из полистиролбетона не требуется.

Заливка колонн ведется одновременно до армированного пояса, который несет функцию дополнительного увеличения прочности стен и дополнительной гарантии от возникновения трещин. Несмотря на то, что полистиролбетон сам по себе фактически не подвержен растрескиванию, мы предпочитаем использовать подобное дополнительное укрепление стен в целях повышения долговечности дома, срок «службы» которого в данном случае – более 100 лет!

Блоги, Полы, фундаменты, основания, Фундаменты

Полистиролбетон цокольный этаж: как сделать, выполнение работ

Содержание

  1. Общие требования к цокольным помещениям
  2. Требования, предъявляемые к материалам
  3. Разновидности блочных материалов для цокольных стен
  4. УДБ – унифицированный фундаментный блок
  5. ФБП – блок пустотный фундаментный
  6. ФБС – стеновой фундаментный блок
  7. ПСБ – полистиролбетонный блок
  8. Строительство из полистиролбетона
  9. Фундаментное основание из пенополистиролбетона
  10. Строительство стен

Конструкция любого объекта, называемая цоколем, считается важным элементом, защищающим фундаментную основу от климатических условий. Именно на него приходится максимальное воздействие влаги и температурных перепадов. Такой «нулевой» уровень оказывает влияние на уровень влажности в комнатах, и необходимо выбрать правильный материал, чтобы возведенный цоколь отличался продолжительным эксплуатационным периодом. Основным условием в выборе материала считается предназначение цокольного помещения, которое в любом случае должно оставаться сухим, прочным и теплым. Один из вариантов такого материала – полистиролбетон, цокольный этаж из которого полностью соответствует заявленным требованиям.

Общие требования к цокольным помещениям

Строя подвальные стены из бетонных материалов, необходимо знать определенные правила и нормы их применения, утвержденные соответствующим ГОСТом. Им регламентируются изготовление и применение блоков из различных бетонов.

Чтобы в подвале всегда было тепло и сухо, обустраивать его следует максимально внимательно.

Для начала определяется уровень нахождения подземных вод. Если пролегают они близко к поверхности, то от обустройства подвала придется отказаться. Можно снаружи и изнутри устроить дренаж, но расходы окажутся большими, а в сезон дождей в подвале все равно окажется вода.

Цокольный подвал рекомендуется строить, если почва сухая, а уровень грунтовых вод не достигает двух с половиной метров.

Требования, предъявляемые к материалам

Цокольные стены представляют собой продолжение фундаментной основы, подвергаются существенным нагрузочным воздействиям. Для строительства цокольного подвала утверждены определенные нормативы:

  • проектные и строительные работы ведутся в строгом соответствии с существующей нормативной документацией, в которой указываются материалы, разрешенные к использованию – железобетонные блоки и панели, монолитные бетоны;
  • такие же материалы используются для строительства жилых объектов. Частники, возводящие многоэтажные здания, могут применять ФБП или ПСБ, основным отличием которых являются небольшие габариты.

Разновидности блочных материалов для цокольных стен

Коротко рассмотрим, из каких материалов рекомендуется возводить подвалы.

УДБ – унифицированный фундаментный блок

Его относят к категории сборных конструкций из железобетона. Монтажные работы напоминают сборку ряда из кубиков. Если кладка ведется ровно, то имеющиеся сквозные отверстия, расположенные вертикально, создают сквозные каналы для установки арматурных прутьев или заливки бетонной смесью.

Стены, возведенные из УДБ, отличаются монолитностью, обладают высоким показателем прочности и сопротивляемости на сдвиг. Материал считается удачным решением для возведения многоэтажных объектов.

Типовых размеров таких блоков десять. При этом параметры ширины и высоты неизменны и составляют 59 и 58 см соответственно, а вот значение длины варьируется в пределах от 58 см до шести метров.

ФБП – блок пустотный фундаментный

Материал схож с предыдущим блоком, но есть конструктивное различие – пустоты не сквозного, а замкнутого характера. Для изготовления применяют щебенку, керамзитный камень, газосиликатные бетоны. Размеры изделий остаются неизменными.

Материал идеально подходит при устройстве цокольных стен по ленточному фундаменту, залитому на сухих и твердых почвах, в остальных случаях специалисты рекомендуют использовать УДБ. Для частного строительства применение ФБП разрешено на объектах, не предполагающих больших нагрузочных воздействий на основание.

Кладка выполняется на цементный раствор с обязательной перевязкой шовных участков, через каждые четыре ряда устраивается армирование металлическими прутьями.

Этот материал разрешается задействовать для устройства цоколя. Несущие стены объекта из него не возводятся.

ФБС – стеновой фундаментный блок

Наиболее известный вариант материала для обустройства цоколя. Отметим, что такие блоки можно монтировать вместо фундаментной основы, если на объекте строительство подвальных помещений не предполагается.

Основными отличиями являются большая масса и способность переносить серьезные нагрузочные воздействия. Если предстоит строительство здания с цоколем, ФБС монтируются по высоте, как стеновой материал.

Следует заметить, что такие блоки обладают определенными преимуществами:

  • материал, используемый для их производства, отличается экологической чистотой, угрозы для человеческого организма не создает;
  •  блоки устойчивы к появлению плесени и грибков, в них не размножаются микроорганизмы;
  • материал отличается продолжительным эксплуатационным периодом, не разрушается, устойчив к деформационным проявлениям, обладает повышенной прочностью;
  • если создать качественный теплоизоляционный слой, морозоустойчивость блоков повышается;
  • с помощью широкого размерного ряда можно обеспечить экономию финансовых средств. Даже в самых нестандартных случаях рассчитать потребность в блоках легко.

ПСБ – полистиролбетонный блок

Современный строительный материал, для изготовления которого используют бетоны и полимерную крошку в качестве наполнительного компонента. Сочетание материалов настолько удачно, что при небольшой массе блоки обладают неплохими теплоизоляционными характеристиками.

Блоки из пенополистиролбетона используются не только для возведения цоколя, из них можно выводить несущие стены, используя подходящую марку прочности.

Монтажные работы из пенополистирольного блочного материала ведутся легко, так как блоки без проблем поддаются ручной обработке. При длине в 58.8 см блоки могут иметь два варианта в ширину и высоту – 30 на 18.8 и 38 на 30 см.

Строительство из полистиролбетона

Возвести дом из такого материала – отличное решение, оправданное не только с точки зрения экономии, но и эффективности. Только придется учесть определенные нюансы:

  •  кровля в обязательном порядке должна иметь уклон;
  • минимальная толщина стены – 375 миллиметров;
  • ширина простенков – от 1.2 м, на угловых участках – от 1.8 м;
  • как правило, стены из пенополистиролбетонных блоков по высоте не превышают пару этажей, уровень потолка каждого из которых – до трех метров.

Для обустройства перекрытий рекомендуется использовать стальные швеллеры.

Фундаментное основание из пенополистиролбетона

Мощный фундамент заливать нет никакого смысла, потому что пенополистирольные блоки со своим показателем плотности создают нагрузочное усилие до пятисот – шестисот килограмм на метр квадратный.

Тип фундаментной основы, создаваемый при помощи такого материала, как правило, ленточный, с армирующим каркасом. Траншея в глубину достигает пятидесяти сантиметров, дно ее в обязательном порядке прокладывается гидроизоляционным материалом.

Для заливки пенополистиролбетонной массы устанавливается опалубочная система из деревянных щитов, в которую монтируют армирующий пояс. Второй вариант – блоки укладываются рядами на гидроизоляционную подушку.

Строительство стен

Теперь рассмотрим, как сделать цокольный этаж из полистиролбетона. Отметим, что возможно выполнение наружной кладки блочного материала и возведение внутренних стен. При этом толщина наружных стен уже известна, а для внутренних такое минимальное значение может составлять 295 миллиметров. Материал хоть и отличается ровностью граней, но при укладке нуждается в постоянном контроле с применением строительного уровня.

Блочные камни укладываются вплотную, стыковочные места заполняются специальным клеевым составом. При этом кладочный шов не должен по толщине превышать одного миллиметра. Отметим, что блочный материал легко пилится, из него удобно выкладывать арочные и проемные участки, так что потери камней в процессе работы будут минимальными.

Если вы стремитесь добиться лучших результатов, пользуясь такой технологией, рекомендуем выдерживать требования строительных норм, рассчитывая толщину стенок, теплоизоляционного слоя и т. п. Лучше всего подобные работы поручать профессиональным специалистам.

Если все работы выполнены правильно, то даже в зимний сезон температурный режим в вашем цокольном помещении будет составлять около двадцати градусов тепла.

Устройство бетонного фундамента на жестком пенопластовом утеплителе

Само собой разумеется, что любое высокоэффективное здание должно быть построено на прочном фундаменте. Так зачем же нам устанавливать наше здание на слой пеноизоляции?

Ответ, конечно же, заключается в ограничении тепловых мостов. Эти мостовые эффекты могут вызвать значительные потери тепла через массивную конструкцию в основании здания. За счет термической изоляции фундамента здания от земли его характеристики улучшаются не только с точки зрения энергоэффективности, но и с точки зрения комфорта и управления влажностью.

Мы укладываем жесткий пенопласт под фундаменты

В некоторых высокоэффективных строительных кругах стало обычным укладывать слой изоляции под плиту на уровне земли. Это особенно актуально в более холодном климате. Что нового в дизайне Passivhaus, так это идея полной изоляции фундамента здания от земли не только под плитой, но и под фундаментами.

Как дизайнеры и строители, работающие над многоквартирным проектом Orchards at Orenco в Хиллсборо, штат Орегон, мы впервые знакомимся с дизайном Passivhaus. Наш коллективный здравый смысл подсказывал, что нам следует с подозрением относиться к этой идее. Почти все структурные нагрузки здания возлагаются на фундаменты, и многим людям кажется глупой затеей класть фундаменты здания на пенопласт.

Тем не менее, после обширных исследований стало ясно, что существует долгая история использования определенных типов пенополистирола очень высокой плотности (EPS) для теплоизоляции под крупными структурными конструкциями всех видов, включая дороги, мосты и взлетно-посадочные полосы. Наши опасения отступили, основываясь на доказательствах, и мы были поколеблены, но все еще сдержанны и осторожны. Осторожность сохраняется и по сей день и будет преследовать нас, пока это не станет устоявшейся строительной практикой, без существенных недостатков.

Четыре дюйма пенополистирола — это правильное количество

Как только команда начала верить, что это может сработать, следующей проблемой стало то, сколько изоляции использовать. Вместе мы пришли к идее 4-дюймового пенопласта EPS, исходя из того, что это обеспечит хороший баланс стоимости и технологичности. В частности, мы пытались избежать более толстых уровней изоляции, которые использовались в некоторых зданиях Passivhaus.

На протяжении всего процесса проектирования выполнялись итерации PHPP, в которых рассматривалось использование более или менее пенопластовой изоляции фундамента; тем не менее, команда продолжала возвращаться к 4-дюймовому слою пены. Мы рассмотрели взаимосвязь R-значения фундамента с изменениями других параметров оболочки, таких как R-значение стены, U-фактор окна и изоляция крыши. После многочисленных итераций команда согласовала толщину пенопласта 4 дюйма.

Итак, как это работает? Пена укладывается под всю плиту на уровне земли и оборачивается вокруг фундаментов и под ними по периметру здания. Толщина пены 4 дюйма уменьшается до 1 дюйма в местах несущих стен, в результате чего получается утолщенная плита с усилением, которая служит опорой для этих стен внутри здания.

Из-за сейсмостойкости проекта предусмотрено несколько больших глубоких фундаментов, которые служат основанием для прижимов, чтобы противостоять высоким боковым нагрузкам на здание. Эти глубокие фундаменты были фактически залиты таким образом, чтобы изоляция плиты непрерывно проходила поверх фундамента.

Координация с субподрядчиками

Когда на участке начались расчистка и раскопки, а затем и первоначальные земляные работы, строительная бригада приступила к детальному процессу координации. Чтобы правильно построить высокоэффективный проект Passivhaus, от генерального подрядчика требуется тщательная и активная координация работ. Нет никакой замены усердию, когда дело доходит до такой координации. Даже тщательно проработанный и точный набор проектной документации не включает всю информацию, необходимую для создания проекта, и неизбежно будут некоторые пробелы в документации или необходимость слегка или существенно изменить деталь для достижения проекта. намерение, принимая во внимание переменные конструкции, такие как последовательность работ, инструкции производителя по установке и т. д.

Координация работ имеет основополагающее значение для всех строительных проектов, но необходимость возрастает при выполнении проекта Passivhaus, особенно когда речь идет о деталях герметичной оболочки здания без тепловых мостов. Например, при определенных условиях может быть четыре или более профессий, влияющих на герметичность здания, поскольку каждая из них поставляет и/или устанавливает компоненты, являющиеся неотъемлемой частью системы воздушного барьера.

Важной обязанностью генерального подрядчика является активное общение со всей группой субподрядчиков, информирование их о Passivhaus и требованиях к проекту, а также информирование их о ключевых вопросах, которые могут повлиять на их объемы работ и общее Сертификация пассивного дома. Из-за сложностей, связанных со спецификациями материалов и деталями конструкции Passivhaus, общение с субподрядчиками, влияющими на ограждающие конструкции здания, требует особого внимания.

В рамках проекта «Сады» в течение первого месяца строительства на объекте было проведено полнодневное совещание по координации строительной оболочки (BEC), чтобы собрать вместе всех связанных с строительной оболочкой субподрядчиков и ключевых поставщиков и рассмотреть требования проекта, включая спецификации, детализацию, график, последовательность профессий и т. д.

Планирование этой встречи на самом раннем этапе строительства позволило команде устранить любые пробелы или несоответствия в объемах работ различных профессий, а также любые вопросы, связанные с проектной документацией. По завершении заседания BEC решенные вопросы были оперативно и эффективно решены в процессе подачи проекта. Вопросы, которые требовали дальнейшего изучения или проектной работы, решались в рамках процесса запроса информации (RFI). Работа по согласованию коснулась всех основных элементов конструкции, включая фундамент, наружные стены, окна и двери, крышу.

Пароизоляция StegoWrap проходит над или под жесткой пеной?

Важной проблемой, которая возникла в процессе согласования, было расположение и детализация пароизоляции подплиты. Пароизоляция не была четко указана в деталях архитектора, хотя пароизоляция была указана. На сборочном чертеже плиты плиты указано, что пароизоляция должна быть установлена ​​под утеплителем плиты. Команда Уолша поставила под сомнение это место, учитывая нашу обеспокоенность тем, что большое количество воды может собраться в слое изоляции плиты, если перед заливкой плиты пойдет дождь. Конфигурация утеплителя и пароизоляции, по сути, создавала герметичную «ванну», способную вместить много воды. Не лучший сценарий!

Несмотря на то, что мы были в Портленде в засушливые летние месяцы, всегда есть вероятность дождя. Когда мы указали на это, архитектор понял нашу озабоченность и согласился с переносом пароизоляции на верхнюю часть плиты изоляции. Кроме того, детали пароизоляции по периметру фундамента не были ясны на проектных чертежах. Мы обсудили это с архитектором и в рамках процесса согласования разобрались с деталями заделки, работая со стандартными деталями производителя пароизоляции и герметизирующей продукцией. Когда эти детали были решены, началось строительство фундамента здания.

Подрядчики по бетону не решались ставить бетонные основания на жесткий пенопласт

Чтобы продвинуться дальше, нам пришлось преодолеть небольшое колебание со стороны бригады бетонщиков. Они никогда раньше не готовили бетонный фундамент для изоляции. Эта идея вызвала немало удивлений. После объяснения назначения слоя пены под фундаментом и плитой сопротивление было преодолено, хотя и временно.

Для возведения фундаментов по периметру здания поверх гравийного основания уложили пенополистирол типа IX толщиной 4 дюйма, пенопласт прошел неофициальные испытания на предмет обеспечения прочного контакта с основанием, поверх пенопласта была сооружена опалубка, и потом заливали бетоном. После первоначального схватывания и отверждения опалубку сняли, а на вертикальную поверхность фундамента нанесли пенополистирол.

После завершения первоначальных работ по устройству фундамента по периметру здания были выполнены приготовления для плиты на уровне грунта. Слой капиллярного разрыва с 6-дюймовым чистым дробленым гравием был помещен поверх скальной рабочей площадки и уплотнен до плотного состояния. Поверх гравийного основания была установлена ​​система защиты от радона. Система включает в себя 4-дюймовый перфорированный гибкий трубопровод, обернутый фильтрующим материалом и заделанный в дополнительный слой гравия толщиной 6 дюймов, уложенный поверх уплотненного гравийного основания. Гравий обеспечивает покрытие трубопровода минимум на 1 дюйм.

Четыре дюйма пенополистирола типа II были уложены поверх гравийного основания. В конструкторской документации указан один слой пенопласта; однако экипаж настаивал на использовании двух слоев 2-дюймовой пены для установки. Бригада полагала, что пена ляжет более плоско и обеспечит большую устойчивость на гравийном основании, состоящем из двух слоев. Это также имело то преимущество, что допускало ступенчатые соединения плит и устраняло прямые пути теплового потока, которые возникали бы в стыковых соединениях плит, если бы мы использовали только один слой, как это обычно бывает при укладке кровельной изоляции. Пена была обрезана, чтобы плотно прилегать к отверстиям. Все щели были заполнены пенопластовым герметиком.

По большей части плитная изоляция укладывалась на гравийное основание; однако было несколько проблем с тем, чтобы пена лежала ровно и стабильно. Эти проблемы были решены переработкой гравия. Инженер-геотехник попросил гравий размером 2–1/4 дюйма, в то время как камни меньшего размера или мелкий гравий помогли бы устранить проблемы, с которыми мы столкнулись.

Прочная пароизоляционная плита

Пароизоляция из перекрёстно-слоистого пластика. Мы установили мембрану StegoWrap толщиной 15 мил. Все соединения внахлестку и швы были заклеены лентой, предоставленной производителем. Типичные отверстия для труб и кабелепроводов также были заклеены лентой. В тех случаях, когда отверстия были соединены слишком близко друг к другу, чтобы их можно было детализировать лентой, для герметизации пароизоляции трубы/канала использовалась мастика. Это дополнительный продукт, предлагаемый производителем пароизоляции. Там, где пароизоляция пересекается с фундаментом по периметру здания, для герметизации пароизоляции к фундаменту использовалась специальная бутиловая лента. Это уплотнение было важно для обеспечения непрерывности воздушного барьера между сборкой плиты на уровне земли и сборкой внешней стены.

Нам очень повезло, что мы переместили пароизоляционный слой на верхнюю часть пенопласта, так как в начале августа несколько дней шел сильный дождь. Дождь не создал серьезных проблем с водой, так как большая часть воды стекала к краям плиты, а то, что оставалось, относительно быстро высыхало. Если бы пароизоляция была помещена поверх гравия, под изоляцией, у нас могла бы возникнуть серьезная проблема с водой, оставшейся в слое изоляции из пенопласта.

Поверх пароизоляции уложена бетонная плита толщиной 4 дюйма. Особое внимание мы уделили составу бетонной смеси. Мы использовали состав смеси от CalPortland с водоцементным отношением 0,42, как и было указано. При заливке бетонной плиты непосредственно поверх пластикового пароизоляционного слоя важно использовать состав смеси с низким водоцементным отношением, чтобы свести к минимуму скручивание плиты, а также свести к минимуму потенциальные проблемы, связанные с влажностью, при нанесении напольных покрытий поверх плиты.

Майк Штеффен — строитель, архитектор и педагог, стремящийся улучшать здания. Он является вице-президентом и генеральным директором Walsh Construction Company в Портленде, штат Орегон.

5 Веские причины не использовать полистирол в вашем фундаменте обрезки образуются на строительных площадках


В очереди стоят 12 500 человек, каждый несет блок полистирола размером с кофейный столик и один за другим бросает свой блок полистирола в море.
Если недавняя тенденция использования вспененного полистирола (EPS) в вафельных основах сохранится, вы, не зная, тоже можете быть одним из этих людей в этом ряду, потому что, к сожалению, также в странах первого мира, таких как Новая Зеландия, по крайней мере 1% полистирола из строительство и снос зданий заканчиваются в наших морях.

Причина № 2: стирол и другие химические вещества, содержащиеся в пенополистироле (в частности, ГБЦД), считаются государственными органами канцерогенами для человека [1][2]

пенополистирол, обычно используемый в строительстве, содержит гексабромциклододекановый антипирен (ГБЦД) .
ГБЦД был классифицирован в Европейском Союзе как вещество, вызывающее очень большую озабоченность, из-за его стойкости, способности к биоаккумуляции, токсичности и опасности для окружающей среды на большие расстояния при транспортировке. В успешном предложении о включении ГБЦД в Стокгольмскую конвенцию о стойких органических загрязнителях правительство Норвегии представило:
«ГБЦД высокотоксичен для водных организмов и, согласно лабораторным исследованиям на млекопитающих, влияет на функционирование системы щитовидной железы и печени. Имеются также признаки влияния на фертильность и нейротоксичность развития млекопитающих. Согласно имеющимся данным, ГБЦД также передается от матери к ребенку во время беременности через кровь и после родов через грудное вскармливание».
Существует добровольное отраслевое соглашение по ГБЦД, которое представляет собой договоренность между подписавшими его компаниями о переходе от ГБЦД к альтернативам.
Министерство окружающей среды Новой Зеландии продолжает работать с промышленностью, чтобы подтвердить правильность настроек поставок, прежде чем регулировать ГБЦД, что, как мы ожидаем, произойдет в конце 2016 или начале 2017 года. Это будет включать ГБЦД в строительные изделия. [3]

Причина №3: ​​во многих отношениях пенополистирол не является экологически безопасным материалом [4]
Углеродный след пенополистирола превосходит другие строительные материалы. Производство, транспортировка, хранение и утилизация имеют решающее значение.
В течение многих лет при производстве пенополистирола использовались галогенсодержащие озоноразрушающие вещества (ОРВ), ответственные за техногенное химическое разрушение озонового слоя.
Воздействие на окружающую среду при транспортировке и хранении пенополистирола велико, поскольку он обычно изготавливается в виде блоков с пониженной плотностью. Всего лишь для дома площадью 250 м2 требуется 40-футовый контейнер, полный блоков пенополистирола…
EPS является одним из наименее перерабатываемых пластиковых материалов [5], потому что переработка пенополистирола неэкономична, а его сбор и утилизация обходится дорого.

Причина № 4: ВПС, используемый в вафельных плитах, не является продуктом вторичной переработки
ВПС может быть переработан, но качество продукта, полученного в результате переработки, не такое хорошее, как при его производстве из первичных смол, и он считается непригодным для использования в фундаментах.

Причина № 5: Изоляционные характеристики пенополистирола сомнительны XPS [8]) характеристики изоляции ухудшаются из-за поглощения влаги.

Fabio Parodi
CPEng (NZ, AU) Dott.Ing (ITA) M.Eng (Hons)
Генеральный директор и директор-основатель Cresco
www.cresco-group.com


[1] https://www. environment.gov.au/system/files/pages/9014ac31-f832-48bd-85b9-f02d8ef70fbe/files/waffle-pod.pdf [2] https://www.theguardian.com/sustainable-business/2014/aug/27/styrene-carcinogen-brands-polystyrene-foam- food-packaging [3] Электронное письмо от 27 сентября 2016 г., полученное от Международной команды Министерства окружающей среды (Новая Зеландия) [4] https://issuu.com/edicomedizioni/docs/wwf_polistirolo [5] http://www.reclaim. co.nz/productitems.php?id=anytime4908294936a39 [6] http://www.buildmagazine.org.nz/articles/show/perimeter-insulation/ [7] https://www.youtube.com/watch?v =aih5zXEE60g; https://www.youtube.com/watch?v=8WBDt0Gtdtw&t=0s [8] https://www.