Цемент история возникновения: Из истории появления бетона и бетономешалок

Из истории появления бетона и бетономешалок

А.Ф. Ренкель
 

 

«Журнал Суда по интеллектуальным правам», № 21, сентябрь 2018 г., с. 101-105

Первые следы применения бетона в строительстве обнаружены в Древнем Риме. Тогда использовали бетонные смеси, состоявшие из гипса, извести и глины, для постройки таких сооружений, как арки, купола и т.д. Однако после развала Римской империи бетон довольно долго не применялся в строительстве.

Вновь следы использования бетона обнаружились всего 200 лет назад на территории Европы. Бетон являл собой каменистую смесь, в состав которой входили вода, заполнитель и вяжущий компонент. Благодаря развитию производственных технологий было изобретено такое вещество, как цемент. В 1796 г. англичанин Паркер путем обжига смеси глины и извести получил романцемент – первую в истории марку цемента. Смешанный в определенных пропорциях с гравием, песком и водой цемент образовал бетон [1].

На территории России цемент стали производить в восемнадцатом столетии. В Англии – в начале девятнадцатого столетия, причем именно там был изобретен гидравлический цемент. Во Франции и Германии первые заводы по производству цемента были открыты в 1842 и 1857 годах соответственно. В Америке производство цемента началось в 1870 году.

На современном строительном рынке бетон представлен множеством разнообразных видов, различным по своим составам и техническим характеристикам. Существует бетон обычный, легкий, тяжелый, силикатный, гипсовый; пластобетон, асфальтобетон и множество других видов, соответствующих различным целям и назначениям.

Изобретатели непрерывно совершенствуют этот материал. Вот несколько разработок, описания которых в последние 5 лет появились на стеллажах Патентной библиотеки России (ВПТБ). Цементные бетоны (пат. № 2509066), придуманы в ЗАО «Геонод разведка» для строительства понтонов, нефтяных платформ, опор с контролируемым и регулируемым саморазрушением их в воде. Суперпластификатор для бетонов (пат. № 2554990) предложила Рамзия Чеснокова (г. Новочебоксарск). Техническим результатом изобретения является увеличение подвижности и набор прочности товарного бетона в широком диапазоне температур.

При изготовлении теплозащитных конструкций зданий и сооружений пригодится теплоизоляционный ячеистый бетон (пат. № 2491257) Северо-Восточного федерального университета имени М.К. Аммосова (г. Якутск). В Самарском государственном аэрокосмическом университете имени ак. С.П. Королева разработана композиция для изготовления жаростойких бетонов (пат. № 2592922). При изготовлении декоративных изделий может найти применение композиция (пат. № 2618819), разработанная в ООО «Ажио» (Санкт-Петербург). Технический результат – повышение предела прочности при сжатии и изгибе, обеспечение негорючести. Способ бетонирования при отрицательных температурах и ферромагнитная примесь для бетона защищены патентом № 2641680.

Настоящим прорывом в строительных технологиях стало изобретение железобетона. Впервые патент на использования железобетона взял в 1854 году английский штукатур Вильям Уилкинсон. Этот высокопрочный материал, без которого невозможно себе представить современную жизнь, появился благодаря… цветочному горшку. Французы, истинные ценители красоты и изящества, украшали внешние и внутренние подоконники и балконы цветами в горшках и кадках. Увы, горшки, в которых произрастали нежные фиалки и примулы, делались из дерева, были непрактичны и недолговечны.

Как-то парижскому цветоводу Жозефу Монье пришла в голову мысль делать горшки из бетона. Однако бетонные вазоны также оказались непригодны для высаживания в них растений – растущие корни разрушали их. Тогда неутомимый садовник придумал усиленную конструкцию: стал покрывать цементом горшки из железной сетки. Так появился железобетон. 16 июля 1867 года Жозеф Монье получил патент на изготовление цветочных кадок из проволочной сетки, обмазанной с двух сторон цементным раствором.

Стальная арматура из проволоки, вживлённая в бетонную среду, делающая изделия ЖБИ прочными и изящными одновременно, стала визитной карточкой всех последующих изобретений Жозефа Монье. За двадцать последующих лет Монье запатентовал порядка 15 изделий из железобетона, в числе которых – железнодорожные шпалы, перекрытия, балки, мостовые конструкции, газовые и водопроводные трубы и даже переносные и стационарные жилые дома. В 1868 году Монье соорудил в Майсонс-Алфорте небольшой железобетонный бассейн, это был первый ЖБИ-бассейн в истории. Первый мост из железобетона, проезжая часть которого составляла около 4 метров, был возведен в 1875 году.

Монье подал в патентные ведомства Германии и России заявки на выдачу патентов на свои изобретения и получил патенты. В 1879 году немецкий инженер и фирмач Вайс заключил лицензионное соглашение с правообладателем. Вайс перенес арматуру из середины сечения в нижнюю зону балки или плиты, испытывавших в этой части наибольшую нагрузку на растяжение. Монье приехал в Берлин, где увидел новацию, запротестовал и сердито спросил у лицензиата Вайса: «Скажите, кто изобретатель этой конструкции – вы или я?» Вайс спокойно ответил: «Вы первый соединили железо с бетоном, и поэтому я называю эту конструкцию системой Монье, но я первый правильно расположил железо и бетон, хотя, к сожалению, я не мог получить на это патент».

Кстати, первым скрестил цементный раствор и арматурную сетку еще в 1848 году адвокат по профессии Ж.-Л. Ламбо, запатентовавший железобетон­ную лодку. Она стало экспонатом Всемирной выставки в Париже, получила приз «ЭКСПО-1855». Увы, специалисты (как это часто бывало в истории изобретений) интереса к диковинке не проявили и о лодке вскоре забыли. Ламбо не стал патентовать железобетон…

Естественное право собственности разработчика на свое изобретение провозгласил патентный закон Франции, принятый Конвентом в январе 1791 года. В своей преамбуле закон запрещал всем и всякому пользоваться изобретением без дозволения субъекта права. Закон утвердил монополию патентовладельца во имя развития промышленности. С этого времени патент на изобретение, родившийся одновременно с капитализмом, способствует его прогрессу.

Справедливость с железобетоном была восстановлена лишь спустя сто лет: в 1950 году во Франции было отмечено столетие рождения железобетона, и тем самым был утвержден приоритет Ламбо.

Идея Монье увлекла другого француза – талантливого инженера Эжена Фрейсине. Обладая глубокими техническими знаниями и досконально изучив свойства нового материала, Фрейсине создал множество уникальных разработок и внес огромный вклад в совершенствование и развитие эксплуатационных характеристик железобетона и расширил границы его применения. Так, например, ему удалось увеличить прочность железобетона с помощью вибропрессования.

Но самой значимой технической работой Фрейсине является изобретение технологии изготовления бетона из струнно-напряженных элементов. Максимально натянутые стальные каркасные струны — опоры в готовом бетонном элементе, возвращаются к исходной длине, придавая бетону дополнительное напряжение. Таким образом, при нагрузке на бетонную конструкцию процессы сжатия и растяжения распределяются равномерно, что значительно повышает несущие свойства железобетона.

Далее начался настоящий «бетонный бум». В начале ХХ века в Германии был изобретен «товарный цемент» — готовая смесь, которая доставлялась к месту строительства. В США и Англии появились первые бетономешалки.

Процесс строительства длился очень долго, поскольку готовый бетон окаменевал. Конная бетономешалка, использовавшаяся в то время, имела ограниченное применение. Деревянные лопасти перемешивали смесь, во время вращения колес телеги, но она была нескладной и медленной [2].

Стефан Степанян в 1935 году изобрел передвижную бетономешалку на шасси грузового автомобиля (пат. США № 1935922). Это техническое решение придало огромное ускорение всему мировому строительному бизнесу. Изобретение Степаняна стало работать за счет принципа естественного обрушения смеси в барабане. В таком барабане неподвижно закреплены лопатки, которые не позволяют компонентам скользить по стенкам при вращении, этим самым и обеспечивается перемешивание. В 1954 году на ежегодном собрании изобретатель Степанян был удостоен награды Национальной Цементной Ассоциации (National Ready Mixed Concrete Association), которая назвала его своим пожизненным почетным членом. В 2004 году Степаняна выбрали в качестве одного из 100 лучших профессионалов частного транспортного сектора Американской дорожной и транспортной ассоциации строителей.

Интересно, что Стефан Степанян (1882–1964) ещё в 1916 году направил заявку на автобетономешалку в Патентное бюро США (Ведомство по патентам и товарным знакам США). Но в выдаче патента было отказано из-за убежденности эксперта ведомства в том, что грузовик не выдержит вес бетономешалки (!?). Однако в 1928 году Степанян повторно подал заявку, и в 1933 году патент получил. Это было действительно революционное изобретение. Впоследствии за свои заслуги Степанян получил прозвище «Отец бетонной промышленности».

По невыясненным причинам патент был выдан с задержкой на 17 лет. Решение эксперта также остается неубедительным: ведь миссией патентного ведомства является продвижение «индустриального и технологического прогресса в Соединённых Штатах и усиление национальной экономики». Рассмотрим ситуацию в рамках патентной науки. В соответствии со ст. 6 Конвенции Евразийское патентное ведомство выдает евразийский патент на изобретение, которое является новым, имеет изобретательский уровень и промышленно применимо. Этот порядок отражен в патентных законах всех стран мира. Изобретение является промышленно применимым, если оно может быть использовано в промышленности, сельском хозяйстве, здравоохранении и других отраслях экономики или в социальной сфере (п. 4 ст. 1350 ГК РФ).

Для признания изобретения промышленно применимым необходимо, чтобы были выполнены следующие условия: указано назначение изобретения в описании, содержавшемся в заявке на дату подачи; приведены в документах и чертежах средства и методы, с помощью которых возможно осуществление изобретения. Осуществимость изобретения дополнительно усиливается требованием к описанию изобретения (п. 2 ст. 1375 ГК РФ гласит: описание должно раскрывать изобретение с полнотой, достаточной для его осуществления).

Эксперт проверяет техническую сторону предложения и на основании описания определяет, основываясь на своем опыте специалиста в данной области техники и используя общие естественно-научные знания, возможно ли в принципе реализовать указанное назначение заявленного изобретения. Если установлено, что на дату приоритета изобретения соблюдены все указанные требования, изобретение признается соответствующим условию применимости.

При несоблюдении указанных требований делается вывод о несоответствии изобретения условию промышленной применимости. В отношении изобретения, для которого установлено несоответствие этому условию, проверка новизны и изобретательского уровня не проводится.

Итак, в случае с автобетономешалкой эксперт был прав: засомневался в работоспособности устройства и отказал в выдаче патента. Для любого изобретателя это типичный пример.

В судебной практике известны случаи рассмотрения тяжб изобретателей к Роспатенту при отказе в выдаче патент. Понятно, если заявленное техническое решение не соответствует условию патентоспособности «промышленная применимость», следует отказ в удовлетворении иска. Таковы Решение Суда по интеллектуальным правам от 7 декабря 2015 года по делу № СИП-64/2015 и Определение Верховного Суда РФ от 12 октября 2016 № 300-ЭС16-13829 по тому же делу. Суды установили, что заявителем 30 апреля 2010 году была подана заявка № 2010117027 на выдачу патента на изобретение «Унифицированная оптическая схема разъемного соединителя волоконных световодов для разработки оптических преобразователей», не отвечающее условию патентоспособности «промышленная применимость».

Но вернемся к автобетоносмесителю. Многие строительные механизмы просты для понимания. Краны двигают грузы вверх и вниз. Самосвалы загружают, перевозят и разгружают. Бульдозеры сгребают. Из всего этого есть одно исключение – это простой автобетоносмеситель. Если бетон в той или иной форме был известен со времен строительства римлянами Аппиевой дороги (между Римом и Капуей), то передвижной бетоносмеситель – дитя ХХ века.

Барабанный автобетоносмеситель, который мы видим на дорогах сегодня, практически не изменился по сравнению с конструкцией Степаняна: как правило, автономный двигатель вращает барабан на кузове грузовика, в котором установлен винт (лопасти), за счет чего наполнитель, вода и цемент находятся в движении. Постоянная подвижность сохраняет готовую бетонную смесь от твердения, расслоения, а герметичная конструкция барабана предохраняет смесь еще и от попадания внешних загрязнений и влаги.

По мере того как менялась технология, менялась и конструкция смесителя. Традиционный автобетоносмеситель имеет вращающийся барабан, в который загружают уже затворенную водой смесь и транспортируют до объекта. При таком подходе смесь необходимо разгрузить на объекте не позднее чем через два часа (в идеале 45 минут).

В США, например, существует и другая категория автобетоносмесителей – с отдельными резервуарами для воды. Большее время в пути цемент, наполнители и другие ингредиенты (добавки) перемешиваются в сухом виде. И только в нескольких километрах от пункта назначения водитель добавляет воду в барабан из резервуара. Это промежуточный вариант между размещением завода на строительной площадке и доставкой уже готовой бетонной смеси.

Конструкция барабана автобетоносмесителя и в наше время совершенствуется. Немецкие изобретатели фирмы ЛИБХЕРР-МИШТЕХНИК ГМБХ особое внимание уделяю конструированию электропривода и гидропривода барабана автобетоносмесителя (пат. RU № 2545237 и № 2467872). В АООТ «НИКТИстройкоммаш» (Санкт-Петербург) разработан смесительный барабан в виде грушевидной емкости, который снабжен спиральными сегментами, образующими винтовую линию (пат. RU № 2215651). Изобретение позволяет повысить эффективность смесителя при работе с жесткими бетонными смесями.

С целью повышения эффективности работы смесителя изобретатель А. Лещинский из Хабаровского государственного технического университета предложил (пат. RU № 2101177) при перемешивании бетонной смеси осуществлять принудительное встречное вращение барабана и лопастного вала с жестко закрепленными на нем спиральными лопастями.

 


Литература

1. Баженов Ю.М., Комар А.Г. Технология бетонных и железобетонных изделий: Учебник для вузов. — М.: Стройиздат, 1984.

2. Добронравов С. С., Сергеев С. П. Строительные машины. Учебное пособие для вузов. М.: Высш. школа, 1981.

 

История возникновения цемента: как менялся материал

Skip to content

Великая Китайская стена, пирамида Нимуса, римский Пантеон, все эти чудеса архитектуры объединяет незаменимый стройматериал – цемент. Конечно, состав цемента сегодня отличается от того, каким он был во II веке до нашей эры.

Принято считать, что цемент – это отдельный стройматериал, но на самом деле, это искусственно вяжущее вещество на основе разных компонентов. Давайте разберемся, что же такое цемент, и кто его придумал.

Откуда взялся цемент

Древние римляне первыми применили массовое строительство из цемента. Они первыми придумали рецепт вяжущего вещества. Но основной компонент, а именно известь, открыли еще этруски в 8 веке до нашей эры. С этого открытия началась история цемента.

Смешав гашеную известь с вулканическим пеплом Везувия, римляне получили стройматериал, который оставался прочным даже под водой. Так появился первый гидравлический цемент. И сегодня мы можем убедиться в этом, посетив Колизей и Римский Форум.

Китайская стена строилась и разрушалась на протяжении многих веков. Но только во времена династии Мин (14-17 век н.э.) появился уникальный цементный раствор из гашеной извести и вареного риса. Эта смесь позволила сохранить не только это чудо света, но и множество гробниц и храмов.

Профессор Джозеф Давидовиц из Швейцарии доказал, что пирамида Хеопса была построена из бетона. Внутри одного из исследуемых блоков нашли человеческий волос. Это доказало, что сначала замешивали раствор, а после, создавались бетонные блоки.

В 1796 году Д. Паркер запатентовал романцемент – вяжущий материал, способный затвердевать как на воздухе, так и в воде. Но этот материал был недостаточно прочным.

Благодаря Джозефу Аспиду 21 октября 1824 года появился портландцемент. Эту дату можно считать днем рождения современного цемента. Назван он так в честь городка Портленд, где добывают природный камень, по цвету совпадающий с цементом.

Современный портландцемент

Портландцемент стал одним из самых популярных типов цемента. В его составе измельченный клинкер и двуводный гипс. В современный портландцемент вводятся различные добавки, которые делят его на 5 основных видов:

  • Быстротвердеющий портландцемент (БТЦ) состоит из клинкера, гипса, минеральных добавок и шлаков. Такой состав позволяет БТЦ в первые трое суток твердеть на 70% быстрее, чем обычный цемент. 

 

  • Пластифицированный портландцемент содержит суперпластификаторы, которые делают бетон более текучим. Такая особенность необходима при постройке объектов, которые подвергаются изменению уровня влажности и температур.

 

  • Пуццолановый портландцемент (ПЦЦ) помимо основных компонентов содержит активную кремнеземистую добавку. Она повышает стойкость к воздействию пресных и соленых вод. Такой вид цемента широко используется для постройки сооружений во влажных условиях. Также этот вид цемента становится прочнее под воздействием высоких температур.

 

  • Композиционный портландцемент производится с добавлением металлургических шлаков. Такой состав позволяет ему обладать сверхпрочными свойствами. Этот вид цемента используется для изготовления железобетонных блоков, и для строительства во влажных условиях.

 

  • Дорожный портландцемент смешивается с добавлением доменного гранулированного шлака. Эта добавка не дает бетонной смеси схватываться в течении первых 2 часов. Такое свойство необходимо в условиях дорожных работ. Для придания смеси повышенных морозостойких свойств, в бетон добавляют пластификаторы и воздухововлекающие добавки.

 

В зависимости от требований к прочности, портландцемент делится на марки от М100-М600. Наиболее востребованными марками являются М400 и М500.

История производства портландцемента

Чтобы получить портландцемент, необходимо смешать измельченный клинкер и гипс. Клинкер получают путем обжига известняка и глины. Впервые обжигать глинистые известняки начали в 1871 году в Америке. Для этого использовали печи, в которых обжигают кирпичи. Такие печи работали неэффективно. Смесь получалась либо слишком запеченной, либо не совсем готовой.

В 1877 году была запатентована первая вращающаяся печь для обжига клинкера. Суточная производительность такой установки была 30 тонн в сутки. Современные печи сухого и мокрого способа производят более 3000 тонн в сутки.

Для равномерного измельчения клинкера, в 1892 году инженер Дэвидсен изобрел первую мельницу. Сегодня существуют мельницы как сухого, так и мокрого помола.

Как и 150 лет назад, производство портландцемента происходит в несколько стадий:

  • Добыча сырья
  • Помол сырья
  • Смешивание необходимых ингредиентов
  • Обжиг (получение клинкера)
  • Помол клинкера с необходимыми добавками. В результате получается портландцемент

Сегодня портландцемент производится по такому же принципу, только на более современном оборудовании, и в других масштабах. 

Производство бетона

После распада Римской империи бетон перестали производить. И только в 1844 году Джонсон запатентовал современный способ производства бетона. Цемент выступает связующим веществом при смешивании бетона. От количества и марки цемента зависит класс и марка бетонной смеси. 

Помимо цемента, в бетонную смесь добавляется гравий, песок и добавки, которые влияют на свойства стройматериала. 

Качество бетона напрямую зависит от качества цемента. Прежде чем замешивать бетон, убедитесь в подлинности цемента. От этого зависит прочность будущей постройки.

History of Cement – ​​World Cement Association

Долгий путь к современному портландцементу

 

Древняя история:

Цемент использовался людьми на протяжении всей истории; вариации этого материала использовались до 12 000 лет назад, при этом самая ранняя археологическая находка сводчатого побеленного пола из обожженного известняка и глины была обнаружена на территории современной Турции.

Первые обожженные глиняные кирпичи были разработаны в так называемом Плодородном Полумесяце, где было обнаружено, что из обожженного известняка можно производить известь для приготовления раствора. Около 800 г. до н.э. финикийцы использовали знания о том, что смесь обожженной извести и вулканического пепла, которую сегодня называют «пуццоланой», можно использовать для производства гидравлической извести, которая была не только прочнее, чем все, что использовалось ранее, но и затвердевала под водой.

Римляне разработали новые методы каменной кладки, с помощью которых они могли возводить грандиозные здания с тяжелым фундаментом. Одной из таких разработок был «opus caementitium», разновидность бетона из извести с заполнителями из песка и щебня. В основном это использовалось между кладочными камнями или кирпичами, служившими опалубкой. В других цементах в качестве заполнителей использовался кирпичный щебень, черепица и керамическая посуда. Римский архитектор и инженер Маркус Витрувий Поллион всесторонне описал знания и методы строительства того времени, которые на протяжении сотен лет служили основой методов строительства.

Знаменитыми историческими зданиями из бетона, сохранившимися до наших дней, являются Колизей и Пантеон в Риме, а также Собор Святой Софии в Стамбуле.

Средневековье

Средневековье было спокойным периодом в истории цемента; любые открытия, сделанные в эту эпоху, остаются неизвестными, хотя известно, что каменщики использовали гидравлический цемент для строительства таких сооружений, как крепости и каналы.

В средневековых гильдиях знания были секретом и передавались ученикам устно, а не в письменном виде, в то время как алхимики исследовали свойства и реакционную способность веществ, часто используя кодированный язык. Типичные строительные растворы того времени состояли из извести и песка — бетона в том виде, в каком мы его знаем, еще не существовало.

Промышленная революция в Европе в конце 18 -го -го века ознаменовалась целым рядом новых разработок в области цемента и бетона, при этом важный вклад сделал Джон Смитон, который обнаружил, что гидравличность извести напрямую связана с содержанием глины в известняке, Джеймс Паркер, Луи Вика и Егор Челиев.

Рождение портландцемента:

Предшественник современного цемента был создан в 1824 году британским каменщиком и строителем Джозефом Аспдином, который экспериментировал с нагреванием известняка и глины до тех пор, пока смесь не прокалится, измельчением и перемешиванием. это с водой. Aspdin назвал этот портландцемент в честь знаменитого прочного строительного камня с острова Портленд в Дорсете, Великобритания. Его сын Уильям Аспдин изготовил первый цемент, содержащий алит (нечистая форма трехкальциевого силиката).

В 1845 году Исаак Джонсон обжигал мел и глину при гораздо более высоких температурах, чем Аспдины, около 1400-1500 o C, что привело к спеканию смеси и получению того, что по сути является современным цементом.

С 1850 года использование бетона из портландцемента значительно увеличилось. Такие проекты, как скульптуры, небольшие мосты и бетонные трубы, были типичными приложениями в то время и помогли повысить его известность. Затем последовали крупномасштабные канализационные системы, такие как в Лондоне и Париже, а строительство метро и подземных переходов увеличило спрос. К концу 19ХХ века пустотелые бетонные блоки для жилищного строительства стали мейнстримом.

Появление железобетона началось в 1840-х годах во Франции, положив начало периоду инноваций с использованием армированных колонн, балок и т. д., позволяющих строить большие мосты, более высокие и большие здания и т. д., и значительно уменьшило преобладание стальных конструкций. .

Первый стандарт цемента для портландцемента был утвержден в Германии в 1878 году, определяя первые методы испытаний и минимальные свойства, и многие другие страны последовали его примеру.

На рубеже веков производство и применение цемента резко возросли во всем мире. С 1900-х годов вращающиеся печи заменили оригинальные печи с вертикальным валом, поскольку они используют радиационную теплопередачу, более эффективную при более высоких температурах. достигается однородная температура клинкера и получается более прочный цемент. В полученную смесь теперь также добавляют гипс для контроля схватывания, а для измельчения клинкера используют шаровые мельницы.

Другие разработки прошлого века включают цементы на основе алюмината кальция для повышения стойкости к сульфатам, смешение Розендейла (натуральный гидравлический цемент, производимый в Нью-Йорке) и портландцемента для получения прочного и быстросхватывающегося цемента в США, а также увеличение использование вяжущих материалов для хранения ядерных отходов.

Будущее цемента и бетона

Постоянно появляются новые технологии и инновации для улучшения устойчивости, прочности и областей применения цемента и бетона. Некоторые передовые продукты включают волокна и специальные заполнители, например, для создания черепицы и столешниц, в то время как производство за пределами площадки также приобретает все большее значение с ростом цифровизации и искусственного интеллекта, что может сократить количество отходов и повысить эффективность и условия труда на месте. Также разрабатываются цементы и бетоны, которые могут поглощать CO 2 в течение всего срока службы, уменьшая углеродный след строительного материала.

 

Текстовые материалы Райнера Нобиса, автора книги «Иллюстрированная история цемента и бетона», доступны для покупки в Интернете.

История бетона — InterNACHI®

Ник Громицко, CMI® и Кентон Шепард

Период времени, в течение которого был впервые изобретен бетон, зависит от того, как интерпретируется термин «бетон». Древние материалы представляли собой сырой цемент, полученный путем дробления и обжига гипса или известняка. Известь также относится к измельченному, обожженному известняку. Когда к этим цементам добавили песок и воду, они превратились в раствор, похожий на гипс, используемый для склеивания камней друг с другом. На протяжении тысячелетий эти материалы совершенствовались, комбинировались с другими материалами и в конечном итоге превратились в современный бетон.

Современный бетон изготавливается из портландцемента, крупных и мелких заполнителей из камня и песка и воды. Добавки представляют собой химические вещества, добавляемые в бетонную смесь для управления ее свойствами схватывания, и используются в основном при укладке бетона в экстремальных условиях окружающей среды, таких как высокие или низкие температуры, ветреная погода и т. д.

Предшественник бетона был изобретен примерно в 1300 г. до н.э. Восточные строители обнаружили, что, когда они покрывали свои глиняные крепости и стены домов снаружи тонким влажным слоем обожженного известняка, он вступал в химическую реакцию с газами в воздухе, образуя твердую защитную поверхность. Это был не бетон, но это было началом разработки цемента.

Ранние цементные композитные материалы обычно включали измельченный раствор, обожженный известняк, песок и воду, которые использовались для строительства из камня, в отличие от отливки материала в форму, которая, по сути, используется в современном бетоне, с формой. бетонные формы.

Являясь одним из ключевых компонентов современного бетона, цемент существует уже давно. Около 12 миллионов лет назад на территории современного Израиля в результате реакции между известняком и горючим сланцем в результате самовозгорания образовались естественные залежи. Однако цемент не является бетоном. Бетон — композитный строительный материал, и ингредиенты, одним из которых является цемент, со временем менялись и меняются даже сейчас. Эксплуатационные характеристики могут изменяться в зависимости от различных сил, которым должен противостоять бетон. Эти силы могут быть постепенными или интенсивными, они могут исходить сверху (гравитация), снизу (пучение почвы), сбоку (боковые нагрузки), или они могут принимать форму эрозии, истирания или химического воздействия. Ингредиенты бетона и их пропорции называются проектной смесью.

Раннее использование бетона

Первые похожие на бетон сооружения были построены набатейскими торговцами или бедуинами, которые оккупировали и контролировали ряд оазисов и создали небольшую империю в регионах южной Сирии и северной Иордании примерно в 6500 г. до н.э. . Позже они обнаружили преимущества гидравлической извести, то есть цемента, который затвердевает под водой, и к 700 г. до н.э. построили печи для приготовления раствора для строительства домов из бутового камня, бетонных полов и подземных водонепроницаемых цистерн. Цистерны держались в секрете и были одной из причин, по которой набатеи смогли процветать в пустыне.

При изготовлении бетона жители Набатеи понимали, что смесь должна быть как можно более сухой или с малой осадкой, так как избыток воды приводит к образованию пустот и слабых мест в бетоне. Их строительные методы включали утрамбовку свежеуложенного бетона специальными инструментами. В процессе трамбовки образовалось больше геля, который представляет собой связующий материал, образующийся в результате химических реакций, происходящих во время гидратации, которые связывают частицы и объединяются вместе.

Древнее здание Набатеи

Как и у римлян 500 лет спустя, у набатеев был местный материал, который можно было использовать для придания водостойкости цементу. На их территории находились крупные поверхностные залежи мелкозернистого кварцевого песка. Подземные воды, просачивающиеся через кремнезем, могут превратить его в пуццолановый материал, представляющий собой песчаный вулканический пепел. Чтобы сделать цемент, набатеи обнаружили залежи, собрали этот материал и смешали его с известью, а затем нагрели в тех же печах, которые они использовали для изготовления своей керамики, поскольку целевые температуры находились в том же диапазоне.

Примерно к 5600 г. до н.э. вдоль реки Дунай на территории бывшей страны Югославии были построены дома с использованием бетона для полов.

Египет

Около 3000 г. до н.э. древние египтяне использовали глину, смешанную с соломой, для изготовления кирпичей. Грязь с соломой больше похожа на саман, чем на бетон. Тем не менее, они также использовали гипсовые и известковые растворы при строительстве пирамид, хотя большинство из нас думает о растворе и бетоне как о двух разных материалах. Для Великой пирамиды в Гизе потребовалось около 500 000 тонн раствора, который использовался в качестве подстилки для облицовочных камней, образующих видимую поверхность готовой пирамиды. Это позволило каменщикам вырезать и устанавливать облицовочные камни с раскрытием швов не шире 1/50 дюйма.

Камень для облицовки пирамиды

Китай

Примерно в это же время северные китайцы использовали форму цемента при строительстве лодок и Великой Китайской стены. Спектрометрические испытания подтвердили, что ключевым ингредиентом раствора, использованного при строительстве Великой китайской стены и других древних китайских построек, был клейкий клейкий рис. Некоторые из этих построек выдержали испытание временем и выдержали даже современные попытки сноса.

Рим

К 600 г. до н.э. греки открыли природный материал пуццолан, который проявлял гидравлические свойства при смешивании с известью, но греки не были так плодовиты в строительстве из бетона, как римляне. К 200 г. до н.э. римляне очень успешно строили из бетона, но это не было похоже на бетон, который мы используем сегодня. Это был не пластичный, текучий материал, разлитый по формам, а скорее сцементированный щебень. Римляне строили большую часть своих построек, складывая камни разного размера и вручную заполняя промежутки между камнями раствором. Наземные стены были облицованы как внутри, так и снаружи глиняными кирпичами, которые также служили формами для бетона. Кирпич практически не имел структурной ценности, и его использование было в основном косметическим. До этого времени и в большинстве мест того времени (включая 95% Рима), обычно используемые растворы представляли собой простой известняковый цемент, который медленно затвердевал в результате реакции с переносимым по воздуху углекислым газом. Истинная химическая гидратация не происходила. Эти минометы были слабыми.

Для более грандиозных и искусных построек римлян, а также для их наземной инфраструктуры, требующей большей прочности, они делали цемент из естественно реактивного вулканического песка под названием harena fossicia . Для морских сооружений и сооружений, подверженных воздействию пресной воды, таких как мосты, доки, ливневые стоки и акведуки, они использовали вулканический песок, называемый пуццуоланой. Эти два материала, вероятно, представляют собой первое крупномасштабное использование действительно цементного вяжущего. Поццуолана и harena fossicia вступает в химическую реакцию с известью и водой для гидратации и затвердевания в камнеподобную массу, которую можно использовать под водой. Римляне также использовали эти материалы для строительства больших сооружений, таких как римские бани, Пантеон и Колизей, и эти сооружения стоят до сих пор. В качестве примесей они использовали животный жир, молоко и кровь — материалы, отражающие очень примитивные методы. С другой стороны, помимо использования природного пуццолана, римляне научились производить два типа искусственного пуццолана — кальцинированную каолинитовую глину и кальцинированные вулканические камни, — что, наряду с впечатляющими строительными достижениями римлян, свидетельствует о высоком уровне технического совершенства для того времени.

Пантеон

Построенный римским императором Адрианом и завершенный в 125 году нашей эры, Пантеон имеет самый большой неармированный бетонный купол из когда-либо построенных. Купол имеет диаметр 142 фута и имеет 27-футовое отверстие, называемое окулусом, на вершине, которая находится на высоте 142 фута над полом. Он был построен на месте, вероятно, начиная с внешних стен и наращивая все более тонкие слои, продвигаясь к центру.

Внешние стены фундамента Пантеона имеют ширину 26 футов и глубину 15 футов и сделаны из пуццоланового цемента (известь, реактивный вулканический песок и вода), утрамбованного поверх слоя плотного каменного заполнителя. То, что купол все еще существует, является чем-то вроде счастливой случайности. Оседание и движение в течение почти 2000 лет, а также случайные землетрясения создали трещины, которые в обычных условиях ослабили бы структуру настолько, что к настоящему времени она должна была бы рухнуть. Внешние стены, поддерживающие купол, содержат семь равномерно расположенных ниш с камерами между ними, которые выходят наружу. Эти ниши и камеры, первоначально предназначенные только для минимизации веса конструкции, тоньше, чем основные части стен, и действуют как контрольные соединения, которые контролируют расположение трещин. Напряжения, вызванные движением, снимаются трещинами в нишах и камерах. Это означает, что купол в основном поддерживается 16 толстыми структурно прочными бетонными колоннами, образованными частями наружных стен между нишами и камерами. Другим методом экономии веса было использование очень тяжелых заполнителей с низкой структурой и использование более легких и менее плотных заполнителей, таких как пемза, высоко в стенах и в куполе. Стенки также сужаются по толщине, чтобы уменьшить вес выше.

Римские гильдии

Еще одним секретом успеха римлян было использование ими торговых гильдий. У каждого ремесла была гильдия, члены которой отвечали за передачу своих знаний о материалах, методах и инструментах ученикам и римским легионам. Помимо боевых действий, легионы обучались самодостаточности, поэтому их также обучали методам строительства и инженерии.

Технологические вехи

В Средние века технологии бетона отстали. После падения Римской империи в 476 году нашей эры методы изготовления пуццоланового цемента были утеряны до тех пор, пока обнаружение в 1414 году рукописей, описывающих эти методы, не возродило интерес к строительству из бетона.

Только в 1793 году технология сделала большой скачок вперед, когда Джон Смитон открыл более современный метод производства гидравлической извести для цемента. Он использовал известняк, содержащий глину, которую обжигали до тех пор, пока она не превращалась в клинкер, который затем измельчали ​​в порошок. Он использовал этот материал при исторической реконструкции маяка Эддистоун в Корнуолле, Англия.

 

Версия Смитона (третья) Эддистоунского маяка, построенная в 1759 году. 

Через 126 лет он рухнул из-за эрозии скалы, на которой стоял.

 

 

Наконец, в 1824 году англичанин по имени Джозеф Аспдин изобрел портландцемент, обжигая мелкоизмельченный мел и глину в печи до удаления углекислого газа. Он был назван «портландским» цементом, потому что он напоминал высококачественные строительные камни, найденные в Портленде, Англия. Широко распространено мнение, что Аспдин был первым, кто нагрел материалы из оксида алюминия и кремнезема до точки стеклования, что привело к плавлению. В процессе витрификации материалы становятся стеклоподобными. Аспдин усовершенствовал свой метод, тщательно смешивая известняк и глину, измельчая их в порошок, а затем сжигая смесь в клинкер, который затем измельчали ​​в готовый цемент.

Состав современного портландцемента

До того, как был открыт портландцемент, и в течение нескольких лет после этого использовались большие количества природного цемента, который производился путем обжига природной смеси извести и глины. Поскольку ингредиенты натурального цемента смешаны по своей природе, его свойства сильно различаются. Современный портландцемент производится в соответствии с подробными стандартами. Некоторые из многих соединений, обнаруженных в нем, важны для процесса гидратации и химических характеристик цемента. Он производится путем нагревания смеси известняка и глины в печи до температуры от 1300°F до 1500°F. До 30% смеси становится расплавленным, но остальная часть остается в твердом состоянии, подвергаясь химическим реакциям, которые могут быть медленными. В конце концов, смесь образует клинкер, который затем измельчают в порошок. Добавляется небольшое количество гипса, чтобы замедлить скорость гидратации и сохранить работоспособность бетона дольше. Между 1835 и 1850 годами впервые были проведены систематические испытания для определения прочности цемента на сжатие и растяжение, а также первые точные химические анализы. Только в 1860 году впервые был произведен портландцемент современного состава.

Печи

На заре производства портландцемента печи были вертикальными и стационарными. В 1885 году английский инженер разработал более эффективную печь, которая была горизонтальной, слегка наклонной и могла вращаться. Вращающаяся печь обеспечивала лучший контроль температуры и лучше смешивала материалы. К 1890 году на рынке доминировали вращающиеся печи. В 1909 году Томас Эдисон получил патент на первую длинную печь. Эта печь, установленная на цементном заводе Edison Portland Cement Works в Нью-Виллидж, штат Нью-Джерси, имела длину 150 футов. Это было примерно на 70 футов длиннее, чем печи, использовавшиеся в то время. Промышленные печи сегодня могут иметь длину до 500 футов.

Вращающаяся печь

Вехи строительства

Хотя и были исключения, в 19 годах бетон использовался в основном для промышленных зданий. Он считался социально неприемлемым в качестве строительного материала по эстетическим соображениям. Первое широкое использование портландцемента в жилищном строительстве было в Англии и Франции между 1850 и 1880 годами французом Франсуа Куанье, который добавил стальные стержни, чтобы предотвратить расползание наружных стен, а позже использовал их в качестве элементов изгиба. Первым домом, построенным из железобетона, был коттедж для прислуги, построенный в Англии Уильямом Б. Уилкинсоном в 1854 году. В 1875 году американский инженер-механик Уильям Уорд построил первый железобетонный дом в США. Он до сих пор стоит в Порт-Честере, штат Нью-Йорк. Уорд усердно вел записи о строительстве, поэтому об этом доме известно очень много. Он был построен из бетона из-за страха его жены перед огнем, и, чтобы быть более приемлемым в обществе, он был спроектирован так, чтобы напоминать каменную кладку. Это было началом того, что сегодня представляет собой отрасль стоимостью 35 миллиардов долларов, в которой занято более 2 миллионов человек только в США.

Дом, построенный Уильямом Уордом, обычно называют замком Уорда.

В 1891 году Джордж Варфоломей залил первую бетонную улицу в США, и она существует до сих пор. Бетон, использованный для этой улицы, прошел испытания при давлении около 8000 фунтов на квадратный дюйм, что примерно в два раза превышает прочность современного бетона, используемого в жилищном строительстве.

Корт-стрит в Беллефонтейне, штат Огайо, старейшая бетонная улица в США

К 1897 году Sears Roebuck продавала 50-галлонные бочки с импортным портландцементом по 3,40 доллара за штуку. Хотя в 1898 году производители цемента использовали более 90 различных формул, к 1900 году базовые испытания, если не методы производства, стали стандартизированными.

В конце 19 -го -го века использование железобетона разрабатывалось более или менее одновременно немцем Г.А. Уэйсс, француз Франсуа Хеннебик и американец Эрнест Л. Рэнсом. Рэнсом начал строительство из армированного сталью бетона в 1877 году и запатентовал систему, в которой использовались скрученные квадратные стержни для улучшения связи между сталью и бетоном. Большинство построенных им сооружений были промышленными.

Компания Hennebique начала строить дома из армированной стали во Франции в конце 1870-х годов. Он получил патенты на свою систему во Франции и Бельгии и добился больших успехов, в конце концов построив империю, продавая франшизы в крупных городах. Он продвигал свой метод, читая лекции на конференциях и разрабатывая собственные стандарты компании. Как и Рэнсом, большинство построек, построенных Хеннебиком, были промышленными. В 1879 году компания Wayss купила права на систему, запатентованную французом Монье, который начал использовать сталь для укрепления бетонных цветочных горшков и контейнеров для растений. Wayss продвигал систему Wayss-Monier.

В 1902 году Огюст Перре спроектировал и построил многоквартирный дом в Париже, используя железобетон для колонн, балок и перекрытий. В здании не было несущих стен, но имелся элегантный фасад, что делало бетон более социально приемлемым. Здание вызвало всеобщее восхищение, и бетон стал более широко использоваться как архитектурный, так и строительный материал. Его дизайн оказал влияние на проектирование железобетонных зданий в последующие годы.

25 Rue Franklin в Париже, Франция

В 1904 году в Цинциннати, штат Огайо, было построено первое бетонное высотное здание. Его высота составляет 16 этажей или 210 футов.

Здание Ингаллс в Цинциннати, штат Огайо

В 1911 году в Риме был построен мост Рисорджименто. Его длина составляет 328 футов.

Мост Рисорджименто в Риме

В 1913 году в Балтимор, штат Мэриленд, была доставлена ​​первая партия готовой смеси. Четыре года спустя Национальное бюро стандартов (ныне Национальное бюро стандартов и технологий) и Американское общество испытаний и материалов (ныне ASTM International) установили стандартную формулу портландцемента.

В 1915 году Матте Трукко построил пятиэтажный автомобильный завод Fiat-Lingotti в Турине из железобетона. На крыше здания находился автомобильный испытательный трек.

 Автозавод Fiat-Lingotti в Турине, Италия

Эжен Фрейсине был французским инженером и пионером в использовании железобетонных конструкций. В 1921 году он построил два гигантских ангара с параболическими арками для дирижаблей в аэропорту Орли в Париже. В 1928 году он получил патент на предварительно напряженный бетон.

Ангар с параболическим архом в аэропорту Орли в Париже, Франция

Строительство авиабилетов

. стойкость бетона к замерзанию и улучшение его удобоукладываемости. Вовлечение воздуха было важным достижением в повышении долговечности современного бетона. Воздухововлечение — это использование реагентов, которые при добавлении в бетон во время перемешивания создают множество пузырьков воздуха, которые чрезвычайно малы и расположены близко друг к другу, и большая часть из них остается в затвердевшем бетоне. Бетон затвердевает в результате химического процесса, называемого гидратацией. Чтобы произошла гидратация, бетон должен иметь минимальное водоцементное отношение 25 частей воды на 100 частей цемента. Вода, превышающая это соотношение, является избыточной водой и помогает сделать бетон более пригодным для укладки и отделки. По мере высыхания и затвердевания бетона лишняя вода испаряется, оставляя поверхность бетона пористой. В эти поры может попадать вода из окружающей среды, такой как дождь и таяние снега. Морозная погода может превратить эту воду в лед. Когда это происходит, вода расширяется, создавая небольшие трещины в бетоне, которые будут увеличиваться по мере повторения процесса, что в конечном итоге приводит к отслаиванию поверхности и износу, называемому отслаиванием. Когда бетон наполнен воздухом, эти крошечные пузырьки могут слегка сжиматься, поглощая часть напряжения, создаваемого расширением, когда вода превращается в лед. Вовлеченный воздух также улучшает удобоукладываемость, поскольку пузырьки действуют как смазка между заполнителем и частицами в бетоне. Захваченный воздух состоит из более крупных пузырьков, попавших в бетон, и не считается полезным.

Thin Shell

Опыт строительства из железобетона в конечном итоге позволил разработать новый способ строительства из бетона; метод тонкой оболочки включает строительные конструкции, такие как крыши, с относительно тонкой оболочкой из бетона. Купола, арки и сложные кривые обычно строятся с помощью этого метода, поскольку они имеют естественную прочную форму. В 1930 году испанский инженер Эдуардо Торроха спроектировал для рынка в Альхесирасе невысокий купол толщиной 3,5 дюйма и шириной 150 футов. Стальные тросы использовались для формирования натяжного кольца. Примерно в то же время итальянец Пьер Луиджи Нерви начал строительство ангаров для ВВС Италии, показанных на фото ниже.

Сборные ангары для ВВС Италии

Ангары были отлиты на месте, но в большинстве работ Нерви использовал сборный железобетон.

Вероятно, самым опытным человеком, когда дело дошло до строительства с использованием методов бетонных оболочек, был Феликс Кандела, испанский математик, инженер-архитектор, который практиковал в основном в Мехико. Крыша Лаборатории космических лучей в Университете Мехико была построена толщиной 5/8 дюйма. Его фирменной формой был гиперболический параболоид. Хотя здание, показанное на фотографии ниже, не было спроектировано Канделой, это хороший пример гиперболической параболоидной крыши.

Гиперболическая параболоидная крыша церкви в Боулдере, штат Колорадо

Та же строящаяся церковь ниже.

Сиднейский оперный театр в Сиднее, Австралия

Плотина Гувера

другие сооружения, связанные с плотиной. Имейте в виду, что это произошло менее чем через 20 лет после того, как была установлена ​​стандартная формула цемента.

Заполнение бетоном колонн плотины Гувера в феврале 1934 г. прохладно, а напряжения от выделяемого тепла и сжатия, происходящего при отверждении бетона, могут привести к растрескиванию и разрушению конструкции. Решение заключалось в том, чтобы залить плотину рядом блоков, которые образовывали колонны, причем некоторые блоки были размером до 50 квадратных футов и высотой 5 футов. Каждая секция высотой 5 футов имеет ряд труб диаметром 1 дюйм, через которые прокачивалась речная вода, а затем механически охлажденная вода для отвода тепла. Как только бетон перестал сжиматься, трубы заполнили цементным раствором. Образцы бетонного сердечника испытаны в 1995 показали, что бетон продолжает набирать прочность и имеет прочность на сжатие выше средней.

Верхняя часть плотины Гувера показана во время первого заполнения построен. Он содержит 12 миллионов ярдов бетона. Раскопки потребовали удаления более 22 миллионов кубических ярдов грязи и камня. Чтобы уменьшить количество автомобильных перевозок, была построена конвейерная лента длиной 2 мили. В местах фундамента раствор закачивался в отверстия, пробуренные глубиной от 660 до 880 футов (в граните), чтобы заполнить любые трещины, которые могут ослабить землю под плотиной. Во избежание обрушения котлована от веса вскрыши в землю были вставлены 3-дюймовые трубы, по которым перекачивалась охлажденная жидкость из холодильной установки. Это заморозило землю, стабилизировав ее настолько, что строительство могло продолжаться.

Плотина Гранд-Кули

Бетон для плотины Гранд-Кули был уложен с использованием тех же методов, что и для плотины Гувера. После помещения в колонны холодная речная вода прокачивалась по трубам, встроенным в твердеющий бетон, снижая температуру в формах с 105° F (41° C) до 45° F (7° C). Это привело к тому, что плотина сократилась примерно на 8 дюймов в длину, а образовавшиеся щели были заполнены цементным раствором.

Строительство плотины Гранд-Кули

Высотное строительство

В годы, последовавшие за строительством Ingalls Building в 1904 году, большинство высотных зданий были построены из стали. Строительство в 1962 году 60-этажных башен-близнецов Бертрана Голдберга в Чикаго вызвало новый интерес к использованию железобетона для высотных зданий.

Самая высокая конструкция в мире (по состоянию на 2011 год) построена из железобетона. Бурдж-Халифа в Дубае в Объединенных Арабских Эмиратах (ОАЭ) имеет высоту 2717 футов.

Вот несколько фактов:

  • Это многофункциональная структура с гостиницей, офисными и торговыми помещениями, ресторанами, ночными клубами, бассейнами и 900 жилыми домами.
  • При строительстве было использовано 431 600 кубических ярдов бетона и 61 000 тонн арматуры.
  • Пустой вес здания составляет около 500 000 тонн, что примерно равно весу раствора, использованного при строительстве Великой пирамиды в Гизе.