Расчет веса бетонных плит. Расчет веса бетонной плиты
Как рассчитать вес бетонной плиты в Санкт-Петербурге? Поможем вычислить и определить вес плиты
С необходимостью узнать вес бетонной плиты или любого другого железобетонного изделия сталкиваются все строительные компании на том или ином этапе строительства. Данный вопрос возникает при необходимости транспортировки бетонных плит, а также непосредственно в процессе возведения здания.
Бетонные плиты при внешних идентичных параметрах могут существенно отличаться по своему весу. На массу изделия влияют такие факторы, как технология изготовления, состав бетонной смеси, какие наполнители использовались производителем.
Особенности веса бетонных плит
Прежде всего, нужно отметить, что существует два значения веса железобетонной плиты – это ее удельный и объемный вес.
Удельный вес бетонной плиты. Говоря об удельном весе, в идеале подразумевают однокомпонентный материал, обладающий 100% плотностью, с полным отсутствием пор. Однако бетонные изделия создаются из нескольких компонентов, в том числе из различных наполнителей, придающих плите структурность и неоднородность. Поэтому расчет удельного веса в данном случае производится путем складывания между собой удельного веса отдельных ингредиентов смеси, включая воду, принимавшую участие в приготовлении бетона.
Объемный вес плиты. Чаще всего значение имеет именно объемный вес изделия, поскольку данный показатель отражает физические свойства бетонной плиты. Важность расчетных данных сложно переоценить. Так, чем меньше объемный вес бетонной плиты, тем меньше требуется энергозатрат для ее установки, и тем меньше расходы на ее транспортировку. В то же время, показатель не должен быть менее допустимого минимального значения, чтобы плита могла выполнять возложенные на нее несущие функции.
Как рассчитать вес бетонных плит
Бетонные плиты СПб вы можете заказать у нашей компании, выбрав тип изделия, подходящий по своим характеристикам вашему проекту.
Расчет веса изделия из бетона можно произвести самым простым способом, путем взвешивания образца, например, одного кубического метра. Однако в случае с готовой бетонной плитой этот вариант неактуален, поэтому узнать вес можно на основании данных о типе бетона и об использованном наполнителе.
Есть несколько типов бетона:
- Сверхлегкий – пористый современный материал, служащий основой для производства газобетонных плит и блоков. Объемный вес материала составляет не более 500 кг.
- Легкий – в диапазоне от 500 до 1200 кг, вес зависит от того, какой именно наполнитель был использован.
- Умеренно тяжелый – вес до 1800 кг, выбирают при изготовлении различных бетонных конструкций.
- Тяжелый – до 2500 кг, делают с добавлением щебня крупной фракции.
- Сверхтяжелый – 2500-3500 кг, применяется в производстве объектов с высоким уровнем защиты от радиации.
Вопреки широко распространенному мнению следует отметить, что вес бетонной плиты не влияет напрямую на ее прочность – этот показатель больше зависит от марки бетона. При одной и той же марке в состав могут быть включены разные наполнители, следовательно, и категории веса могут варьироваться.
Купить плиты в СПб вы можете у нашей компании, оформив заказ любым удобным для вас способом. Бетонные плиты, представленные у нас, отличаются долговечностью и небольшой ценой при высоком качестве исполнения. Свяжитесь с нами, для получения более детальной информации относительно плит и других бетонных изделий.
betonnye-plity.ru
Сколько будет весить один кубометр бетона
Вес бетона — величина, очень важная как при строительстве, так и при демонтаже бетонных зданий. От нее будут зависеть особенности конструкции фундамента и перекрытий дома. Этим же показателем пользуются, чтобы определить количество и грузоподъемность транспорта, необходимого для вывоза обломков, когда здание разрушают. Как же определить, сколько весит куб бетона?
От чего зависит вес кубического метра бетона
На этот вопрос никто не даст однозначного ответа, не задав прежде несколько уточняющих вопросов. Вес бетона — величина, которая зависит от сочетания таких показателей, как:
- марка цемента;
- вид заполнителей;
- количество используемой для затворения воды.
В зависимости от указанных выше факторов выделяют следующие виды бетона, отличающиеся друг от друга своим удельным весом, то есть массой кубического метра:
Особо легкие
Чаще всего это цементные растворы, заполненные мелкими пузырьками воздуха либо кусочками перлита, вермикулита и других легких минералов. Используют их как теплоизоляторы, при герметизации различных швов, стыков, для устранения трещин. Для изготовления несущих конструкций они непригодны. В этом случае вес куба бетона не превышает 500 кг.
Легкие, имеющие марку М 100 или 150
Заполнителями в них служат пористые материалы, например, туф, керамзит или ракушечник. Существуют виды строительных растворов, не содержащих в своем составе ни тяжелых, ни легких камней. Их малый вес объясняется наличием пор в самом цементном растворе. К ним относят пено- и газобетоны.
Кубометр таких смесей может иметь массу от 500 до 1800 килограмм. Значительную долю в них занимает песок, которого в кубе готового раствора может быть до 600 кг. Используют такие бетонные смеси для изготовления стеновых блоков.
Тяжелые, марок М 200, 250, 300
Это классические бетоны, в которых в роли заполнителей выступают гравий или щебень. Их готовят, пользуясь пропорцией 1:2:4:0,5 или 1:3:5:0,5, где первая цифра — объемное содержание вяжущего компонента — цемента, а остальные — соответственно песок, щебень и вода.
Например, на приготовление кубометра такого бетонного раствора необходимо будет затратить от 250 до 400 кг цемента в зависимости от его марки, 600 — 700 кг песка, 1200 — 1300 кг гравия или щебня и залить эту смесь 170 — 200 литрами воды.
Величины эти неточные и могут изменяться в широких пределах. Однако бетон производят большими объемами, поэтому несколько потерянных и прибавленных при расчетах килограммов существенной роли не сыграют.
Куб такого бетона имеет массу от 1800 до 2500 кг. Спектр областей его применения очень широк. Это и заливка фундаментов, и строительство монолитных стен, и изготовление железобетонных плит и блоков. Пригоден такой раствор для заливки стяжек, дорожек, площадок, изготовления заборов и лестниц. Бетоны указанных марок — самые востребованные.
Особо тяжелые, марок М400 или 500
Здесь в роли заполнителей используют отходы металлургической промышленности (металлический скрап), а также магнетит, барит, гематит. В строительстве жилых домов такие бетоны не используют. Основные области их применения — это создание защитных конструкций на атомных электростанциях, в бункерах для хранения радиоактивных отходов и других подобных сооружениях.
Вес кубометра таких бетонов — от 2500 до 3000 кг, большая часть которого приходится именно на крупные заполнители.
Как рассчитать массу кубического метра бетона
Все приведенные выше параметры регламентированы стандартами СНиП №II-3, установленными еще в 1979 году. В данном документе указаны и более точные значения для бетонов с использованием конкретных заполнителей (все значения в кг/кубометр):
- железобетонные конструкции — 2500;
- щебень, гравий — 2400;
- туф — от 1200 до 1600;
- пемза и другие фракции вулканического происхождения — от 800 до 1600;
- керамзит — от 500 до 1800;
- пено- и газобетоны — от 300 до 1000.
Определить массу кубометра готового бетона можно и исходя из его марки. Величины удельного веса бетона в кг/кубометр приведены ниже:
Таблица «Удельный вес бетонов (1м3) различных марок»
Марка бетона | Удельный вес (кг/кубометр) |
М100 | 2495 |
М200 | 2430 |
М250 | 2350 |
М300 | 2390 |
М350 | 2500 |
М400 | 2375 |
М500 | 2300 |
Если же вам нужны данные именно для вашего бетона, а не усредненные показатели, произвести расчеты можно самостоятельно. Для этого нужно знать содержание и марку каждого компонента смеси.
Приведем пример
Необходимо приготовить куб бетона марки М200 из цемента М400 при следующих показателях:
- фракция щебня — 4 см;
- водоцементное соотношение — 0,57;
- плотность песка — 2,63 г/см3;
- плотность цемента — 3,1 г/см3;
- плотность щебня — 3,6 кг/л
Цемента для приготовления порции такого бетона потребуется 325 кг. Этот параметр рассчитывается при помощи таблиц, приведенных в СНиП, путем деления объема воды, необходимого для приготовления раствора нужной марки, на водоцементное соотношение.
Далее, вычисляем суммарный объем песка и щебня. Для этого из общего объема (1 кубометр или 1000 литров) вычитаем сумму объемов цемента и воды. Объем воды указан в таблице — 185 литров, объем цемента получаем из школьной формулы, разделив его массу на плотность. Итого получаем 1000 — (185 + 325/3,1) = 710 литров.
Зная процентное соотношение песка и щебня в смеси (также представлено в таблицах) вычисляем объем каждого из этих компонентов отдельно. Определить объем части от целого несложно: общий объем умножить на процент компонента и разделить полученную величину на сто. Итого при процентном соотношении песка к щебню в нашей смеси равном 41:59 получаем: 710×0,41/100 = 290 л песка и, соответственно, 420 л щебня.
Зная объем и плотность компонентов, перемножая их друг на друга, получаем вес песка в килограммах 763, щебня — 1092 кг. Если добавить массу цемента (325 кг) и воды (185 кг), получим массу кубометра бетона — 2362 кг/кубометр. Как видите, величина близка к табличной (2430 кг/кубометр).
Есть и еще более упрощенный способ расчетов. Для получения бетона марки М200, прочности которого вполне достаточно, чтобы выдержать нагрузку частного дома, объемное соотношение цемента, песка и щебня должно составлять 1:3:5. Если сложить все эти части (1+3+5) получим суммарно 9 объемных частей.
Зная, что один кубометр — это 1000 литров, получим одну объемную часть, равную 1000/9=111л или 0,111 кубометра. Тогда масса цемента в смеси будет 0,111 кубометра x3100 кг/кубометр = 344 кг. Массы остальных компонентов можно рассчитать так же, как и массу цемента или воспользоваться первым способом. Водоцементное соотношение в этом случае допустимо взять равным 0,5. Величины получатся близкие, но неодинаковые.
Для частного строительства, как уже было указано выше, такой способ расчетов вполне приемлем. В иных случаях пользуются величинами, приведенными в СНиП. Если же вы неуверены, что сможете произвести все вычисления самостоятельно, то разумнее будет воспользоваться товарным бетоном, приобретенным на заводе ЖБИ.
plita.guru
Расчет плиты бетонной
Калькулятор толщины, арматуры и опалубки фундамента плиты
Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003
Плитный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.
Обязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.
Главным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.
Обязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.
При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация.
Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.
Общие сведения по результатам расчетов
- Периметр плиты - Длина всех сторон фундамента
- Площадь подошвы плиты - Равняется площади необходимого утеплителя и гидроизоляции между плитой и почвой.
- Площадь боковой поверхности - Равняется площади утеплителя всех боковых сторон.
- Объем бетона - Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
- Вес бетона - Указан примерный вес бетона по средней плотности.
- Нагрузка на почву от фундамента - Распределенная нагрузка на всю площадь опоры.
- Минимальный диаметр стержней арматурной сетки - Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения плиты.
- Минимальный диаметр вертикальных стержней арматуры - Минимальный диаметр вертикальных стержней арматуры по СНиП.
- Размер ячейки сетки - Средний размер ячеек сетки арматурного каркаса.
- Величина нахлеста арматуры - При креплении отрезков стержней внахлест.
- Общая длина арматуры - Длина всей арматуры для вязки каркаса с учетом нахлеста.
- Общий вес арматуры - Вес арматурного каркаса.
- Толщина доски опалубки - Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
- Кол-во досок для опалубки - Количество материала для опалубки заданного размера.
Для расчета УШП необходимо вычесть объем закладываемого утеплителя из объема рассчитанного бетона.
stroy-calc.ru
Сбор нагрузок на плиту перекрытия
- 26-12-2013
- 17365 Просмотров
Оглавление: [скрыть]
- Расчет железобетонной монолитной плиты перекрытия
- Первый этап: определение расчетной длины плиты
- Определение геометрических параметров железобетонного монолитного перекрытия
- Существующие виды нагрузок, сбор которых следует выполнить
- Определения максимального изгибающего момента для нормального (поперечного) сечения балки
- Некоторые нюансы
- Подбор сечения арматуры
- Количество стержней для армирования монолитной железобетонной плиты перекрытия
- Сбор нагрузок - некоторый дополнительный расчет
Железобетонные монолитные плиты перекрытия, несмотря на то, что имеется достаточно большое количество готовых плит, по-прежнему востребованы. Особенно если это собственный частный дом с неповторимой планировкой, в котором абсолютно все комнаты имеют разные размеры либо процесс строительства ведется без использования подъемных кранов.
Монолитные плиты достаточно востребованы, особенно в строительстве загородных домов с индивидуальным дизайном.
В подобном случае устройство монолитной железобетонной плиты перекрытия дает возможность значительно сократить затраты денежных средств на приобретение всех необходимых материалов, их доставку либо монтаж. Однако в данном случае большее количество времени может уйти на выполнение подготовительных работ, в числе которых будет и устройство опалубки. Стоит знать, что людей, которые затевают бетонирование перекрытия, отпугивает вовсе не это.
Заказать арматуру, бетон и сделать опалубку на сегодняшний день несложно. Проблема заключается в том, что не каждый человек может определить, какая именно арматура и бетон понадобятся для того, чтобы выполнить подобные работы.
Данный материал не является руководством к действию, а несет чисто информационный характер и содержит исключительно пример расчета. Все тонкости расчетов конструкций из железобетона строго нормированы в СНиП 52-01-2003 «Железобетонные и бетонные конструкции. Основные положения», а также в своде правил СП 52-1001-2003 «Железобетонные и бетонные конструкции без предварительного напряжения арматуры».
Монолитная плита перекрытия представляет собой армированную по всей площади опалубку, которая заливается бетоном.
Касательно всех вопросов, которые могут возникать в процессе расчета железобетонных конструкций, следует обращаться именно к данным документам. В данном материале будет содержаться пример расчета монолитного железобетонного перекрытия согласно тем рекомендациям, которые содержатся в данных правилах и нормах.
Пример расчета железобетонной плиты и любой строительной конструкции в целом будет состоять из нескольких этапов. Их суть — подбор геометрических параметров нормального (поперечного) сечения, класса арматуры и класса бетона, чтобы плита, которая проектируется, не разрушилась под воздействием максимально возможной нагрузки.
Пример расчета будет производиться для сечения, которое перпендикулярно оси х. На местное сжатие, на действие поперечных сил, продавливание, на кручение (предельные состояния 1 группы), на раскрытие трещин и расчет по деформациям (предельные состояния 2 группы) производиться не будут. Заранее стоит предположить, что для обыкновенной плоской плиты перекрытия в жилом частном доме подобных расчетов не требуется. Как правило, так оно и есть на самом деле.
Следует ограничиться лишь расчетом нормального (поперечного) сечения на действия изгибающего момента. Те люди, которым не нужно давать пояснения касательно определения геометрических параметров, выбора расчетных схем, сбор нагрузок и расчетных предпосылок, могут сразу перейти к разделу, в котором содержится пример расчета.
Вернуться к оглавлению
Плита перекрытия может быть абсолютно любой длины, а вот длину пролета балки уже необходимо высчитывать отдельно.
Реальная длина может быть абсолютно любой, а вот расчетная длина, выражаясь другими словами, пролет балки (в данном случае плиты перекрытия) — совсем другое дело. Пролетом является расстояние между несущими стенами в свету. Это длина и ширина помещения от стенки до стенки, следовательно, определить пролет железобетонного монолитного перекрытия довольно просто. Следует измерить рулеткой либо другими подручными средствами данное расстояние. Реальная длина во всех случаях будет большей.
Железобетонная монолитная плита перекрытия может опираться на несущие стенки, которые выкладываются из кирпича, камня, шлакоблоков, керамзитобетона, пено- либо газобетона. В подобном случае это не очень важно, однако в случае, если несущие стенки выкладываются из материалов, которые имеют недостаточную прочность (газобетон, пенобетон, шлакоблок, керамзитобетон), также необходимо будет выполнить сбор некоторых дополнительных нагрузок.
Данный пример содержит расчет для однопролетной плиты перекрытия, которая опирается на 2 несущих стенки. Расчет плиты из железобетона, которая опирается по контуру, то есть на 4 несущих стенки, или для многопролетных плит рассматриваться в данном материале не будет.
Чтобы то, что было сказано выше, усваивалось лучше, следует принять значение расчетной длины плиты l = 4 м.
Вернуться к оглавлению
Расчет нагрузок на плиту перекрытия считается отдельно для каждого конкретного случая строительства.
Данные параметры пока не известны, однако есть смысл их задать для того, чтобы была возможность произвести расчет.
Высота плиты задается как h = 10 см, условная ширина — b = 100 см. Условность в подобном случае означает то, что плита бетонного перекрытия будет рассматриваться как балка, которая имеет высоту 10 см и ширину 100 см. Следовательно, результаты, которые будут получены, могут применяться для всех оставшихся сантиметров ширины плиты. То есть, если планируется изготавливать плиту перекрытия, которая имеет расчетную длину 4 м и ширину 6 м, для каждого из данных 6 м необходимо применять параметры, определенные для расчетного 1 м.
Класс бетона будет принят B20, а класс арматуры — A400.
Далее происходит определение опор. В зависимости от ширины опирания плит перекрытия на стенки, от материала и веса несущих стенок плита перекрытия может рассматриваться как шарнирно опертая бесконсольная балка. Это является наиболее распространенным случаем.
Далее происходит сбор нагрузки на плиту. Они могут быть самыми разнообразными. Если смотреть с точки зрения строительной механики, все, что будет неподвижно лежать на балке, приклеено, прибито либо подвешено на плиту перекрытия — это статистическая и достаточно часто постоянная нагрузка. Все что ползает, ходит, ездит, бегает и падает на балку — динамические нагрузки. Подобные нагрузки чаще всего являются временными. Однако в рассматриваемом примере никакой разницы между постоянными и временными нагрузками делаться не будет.
http://youtu.be/QOxrCD5RIbg
Вернуться к оглавлению
Сбор нагрузок сосредоточен на том, что нагрузка может быть равномерно распределенной, сосредоточенной, неравномерно распределенной и другой. Однако нет смысла так сильно углубляться во все существующие варианты сочетания нагрузки, сбор которой производится. В данном примере будет равномерно распределенная нагрузка, потому как подобный случай загрузки для плит перекрытия в жилых частных домах является наиболее распространенным.
Сосредоточенная нагрузка должна измеряться в кг-силах (КГС) или в Ньютонах. Распределенная же нагрузка — в кгс/м.
Нагрузки на плиту перекрытия могут быть самыми разными, сосредоточенными, равномерно распределенными, неравномерно распределенными и т. д.
Чаще всего плиты перекрытия в частных домах рассчитываются на определенную нагрузку: q1 = 400 кг на 1 кв.м. При высоте плиты, которая равняется 10 см, вес плиты добавит к данной нагрузки еще порядка 250 кг на 1 кв.м. Керамическая плитка и стяжка — еще до 100 кг на 1 кв.м.
Подобная распределенная нагрузка будет учитывать практически все сочетания нагрузок на перекрытия в жилом доме, которые возможны. Однако стоит знать, что никто не запрещает рассчитывать конструкцию на большие нагрузки. В данном материале будет принято такое значение и, на всякий случай, следует умножить его на коэффициент надежности: y = 1.2.
q = (400 + 250 + 100) * 1.2 = 900 кг на 1 кв.м.
Будут рассчитываться параметры плиты, которая имеет ширину 100 см. Следовательно, данная распределенная нагрузка будет рассматриваться как плоская, которая действует по оси y на плиту перекрытия. Измеряется в кг/м.
Вернуться к оглавлению
Для бесконсольной балки на двух шарнирных опорах (в данном случае — плита перекрытия, опирающаяся на стены, на которую действуют равномерно распределенные нагрузки) максимальный изгибающий момент будет посредине балки. Mmax = (q * l^2) / 8 (149:5.1)
Для пролета l = 4 м, Mmax = (900 * 4^2) / 8 = 1800 кг/м.
Необходимо знать, что расчет железобетонной арматуры по предельным усилиям согласно СП 52-101-2003 и СНиП 52-01-2003 основывается на следующих расчетных предпосылках:
Схема пустотелой армированной плиты перекрытия
- Сопротивление бетона растяжению следует принять равным 0. Подобное допущение производится на том основании, что сопротивление бетона растяжению гораздо меньше сопротивления растяжению арматуры (ориентировочно в 100 раз), следовательно, в растянутой зоне конструкции из железобетона могут образовываться трещины из-за разрыва бетона. Таким образом на растяжение в нормальном сечении работает только арматура.
- Сопротивление бетона сжатию следует принять равномерно распределенным по зоне сжатия. Оно принимается не более расчетного сопротивления Rb.
- Растягивающие максимальные напряжения арматуры следует принимать не более, чем расчетное сопротивление Rs.
Чтобы не допускать эффект образования пластического шарнира и обрушения конструкции, которое возможно при этом, соотношение E высоты сжатой зоны бетона у к расстоянию от центра тяжести арматуры к верху балки h0, E = y/h0, должно быть не более, чем предельное значение ER. Предельное значение должно определяться по следующей формуле:
ER = 0.8 / (1 + Rs / 700).
Это эмпирическая формула, которая основывается на опыте проектирования конструкций из железобетона. Rs — расчетное сопротивление арматуры в МПа. Однако стоит знать, что на данном этапе с легкостью можно обойтись и таблицей граничных значений относительной высоты сжатой зоны бетона.
http://youtu.be/6X8bT5tDu0c
Вернуться к оглавлению
Есть примечание к значениям в таблице, пример которой содержится в материале. Если сбор нагрузок для расчета выполняется не профессиональными проектировщиками, рекомендуется занижать значения сжатой зоны ER приблизительно в 1,5 раза.
Дальнейший расчет будет производиться с учетом a = 2 см, где a — расстояние от низа балки до центра поперечного сечения арматуры.
При E меньше/равно ER и отсутствии арматуры в сжатой зоне бетонную прочность следует проверять согласно следующей формуле:
B
Физический смысл данной формулы несложен. Любой момент может быть представлен в виде действующей силы с некоторым плечом, следовательно, для бетона понадобится соблюдать вышеприведенное условие.
Проверка прочности прямоугольных сечений с одиночной арматурой с учетом E меньше/равно ER производится согласно формуле: M
Суть данной формулы следующая: по расчетам арматура должна выдержать нагрузку такую же, как и бетон, потому как на арматуру будет действовать такая же сила с таким же плечом, как и на бетон.
Плиты перекрытия с разными несущими способностями, от 400 кг/м2 до 2300 кг/м2.
Примечание по этому поводу. Подобная расчетная схема, которая предполагает плечо действия силы (h0 — 0.5y), дает возможность довольно легко и просто определить основные параметры поперечного сечения согласно формулам, которые будут приведены ниже. Однако стоит понимать, что подобная расчетная схема вовсе не единственная.
Расчет может быть произведен относительно центра тяжести сечения, которое было приведено. В отличие от металлических и деревянных балок, рассчитывать железобетон по предельным растягивающим либо сжимающим напряжениям, которые возникают в нормальном (поперечном) сечении балки из железобетона несколько сложно.
Железобетон является композитным и очень неоднородным материалом. Однако и это еще не все. Многочисленные экспериментальные данные сообщают о том, что предел прочности, текучести, модуль упругости и другие различные механические характеристики имеют несколько значительный разброс. К примеру, при определении бетонного предела прочности на сжатие одинаковые результаты не будут получаться даже тогда, когда образцы изготавливаются из смеси бетона одного замеса.
Связано это с тем, что прочность бетона будет зависеть от большого количества различных факторов: качества (степени загрязненности в том числе) и крупности заполнителя, способа уплотнения смеси, активности цемента, различных технологических факторов и так далее. Обращая внимание на случайную природу данных факторов, естественно считать предел бетонной прочности случайной величиной.
Высота сжатой зоны бетона при отсутствии в ней арматуры может определяться по следующей формуле:
y = Rs*As / Rb*b.
Для того, чтобы определить сечение арматуры, прежде всего необходимо определить коэффициент am:
am = M / Rb*b*h0^2.
Арматура в сжатой зоне не требуется при am
В случае, если арматура в сжатой зоне отсутствует, сечение арматуры необходимо определять согласно следующей формуле:
As = Rb * b * h0 (1 — корень кв.(1 — 2am)) * l * Rs.
http://youtu.be/HGLNaU1vVvw
Вернуться к оглавлению
Расчетное сопротивление растяжению для арматуры A400 будет: Rs = 3600 кгс/см кв. (355 МПа). Расчетное сопротивление бетонному сжатию (класс B20) будет: Rb = 117 кгс/см кв. (11.5 МПа). Все остальные нагрузки и параметры для имеющейся плиты были определены ранее. Прежде всего с помощью формулы будет определено значение коэффициента am:
am = 1800 / (1 * 0.08^2 * 1170000) = 0.24038.
Арматуры имеет два размера, условный и реальный размеры.
В связи с тем, что момент был определен в кг/м и размер поперечного сечения удобно подставлять в метрах тоже, значение расчетного сопротивления будет приведено кг/м кв. для того, чтобы соблюдалась размерность.
Подобное значение меньше предельного для такого класса арматуры согласно таблице (0.24038
As = 117 * 100 * 8 (1 — корень кв. (1 — 2 * 0.24038)) / 3600 = 7.265 кв.см.
В подобном случае использовались размеры поперечного сечения в сантиметрах. Значение расчетных сопротивлений при этом было в кг/см кв. для того, чтобы упростить вычисления.
Для армирования 1 п.м имеющейся плиты перекрытия следует использовать 5 стержней, которые имеют диаметр 14 мм с шагом 200 мм. Площадь сечения арматуры будет 7.69 кв.см. Подбор арматуры достаточно удобно производится согласно следующей таблице.
http://youtu.be/toZzxjPh_FM
Вернуться к оглавлению
Для того чтобы армировать плиту, есть возможность использовать 7 стержней, которые имеют диаметр 12 мм с шагом 140 мм. Есть и другой вариант — 10 стержней, которые имеют диаметр 10 мм и шаг 100 мм.
Прочность бетона проверяется согласно следующей формуле:
y = 3600 * 7.69 / (117 * 100) = 2.366 см.
E = 2.366 / 8 = 0.29575. Данное значение меньше, чем граничное 0.531 согласно формулам и таблице, помимо того, оно меньше рекомендуемого 0.531/1.5 = 0.354, то есть удовлетворяет всем имеющимся требованиям.
117 * 100 * 2.366 (8 — 0.5 * 2.366) = 188709 кг на см > M = 180000 кг на см, согласно формуле. 36
3600 * 7.69 (8 — 0.5 * 2.366) = 188721 кг на см > M = 180000 кг на см, согласно формуле.
Устройство пола поверх монолитной армированной плиты перекрытия
Все необходимые требования таким образом соблюдаются.
В случае, если класс бетона будет увеличен до B25, арматуры при этом будет необходимо меньшее количество, потому как для B25 Rb = 148 кгс/см кв. (14.5 МПа).
am = 1800 / (1 * 0.08^2 * 1480000) = 0.19003.
As = 148 * 100 * 10 (1 — корень кв. (1 — 2 * 0.19)) / 3600 = 6.99 кв.см.
Таким образом, для того, чтобы армировать 1 п.м имеющейся плиты перекрытия, все равно понадобится использовать 5 стержней, которые имеют диаметр 14 мм с шагом 200 мм либо продолжать подбирать сечение.
Стоит сделать вывод, что сами расчеты достаточно просты, помимо того, они не займут большое количество времени. Однако при этом формулы понятнее не становятся. Совершенно любую железобетонную конструкцию теоретически можно рассчитать, исходя из классических, то есть предельно простых и наглядных формул.
http://youtu.be/wKRTKAqmemo
Вернуться к оглавлению
Сбор нагрузок и расчет прочности монолитных плит перекрытия часто сводится к сравнению двух факторов между собой:
- усилий, которые действуют в плитах;
- прочностью армированных ее сечений.
Первое в обязательном порядке должно быть меньше, чем второе.
Определение в нагруженных сечениях моментных усилий. Моментных, потому что изгибающие моменты будут определять на 95% армирование изгибных плит. Нагруженные сечения — середина пролета или, выражаясь другими словами, центр плиты.
Изгибающие моменты в квадратной плите, которая не защемлена по контуру (пример — на кирпичные стены) по каждому направлению X и Y могут определяться: Mx = My = ql^2 / 23.
Для частных случаев можно получить некоторые определенные значения:
- Плита в плане 6х6 м — Mx = My = 1.9тм.
- Плита в плане 5х5 м — Mx = My = 1.3тм.
- Плита в плане 4х4 м — Mx = My = 0.8тм.
http://youtu.be/vwOW0anhQIo
При проверке прочности считается, что в сечении имеется сжатый бетон сверху, а также растянутая арматура снизу. Они способны образовать силовую пару, которая воспринимает моментное усилие, приходящее на нее.
1popotolku.ru
Калькулятор расчета оптимальной толщины монолитной фундаментной плиты - с необходимыми пояснениями
При ведении строительства на загородном участке иногда обстоятельства складываются таким образом, что оптимальным решением становится возведение фундамента в виде монолитной плиты. Это позволяет равномерно распределить нагрузку по большой площади, что особо важно на слабых, неустойчивых грунтах, где ленточная схема фундамента себя не оправдывает.
Калькулятор расчета оптимальной толщины монолитной фундаментной плиты
Даже при невысокой несущей способности грунта нет необходимости углубляться ниже уровня промерзания почвы – при правильном расчете и строительстве основание получается «плавающим», не боящимся сил морозного пучения. Но для этого размеры плиты должны соответствовать реальным условиям строительства – типу преобладающих грунтов на участке застройки и нагрузкам, которые будут выпадать на фундамент. Калькулятор расчета оптимальной толщины монолитной фундаментной плиты поможет определиться с одним их ключевых параметров, а иногда – даже оценить целесообразность применения подобного типа основания.
Работа с калькулятором требует определенных пояснений. Они будут приведены ниже, в соответствующем разделе.
Калькулятор расчета оптимальной толщины монолитной фундаментной плиты
На чем строится и как проводится расчет
Перед началом строительства обязательно проводится анализ грунтов, на которые будет опираться плита, чтобы оценить их несущую способность. Этот параметр выражается в килограммах на квадратный сантиметр, и значения несложно найти в таблицах СНиП.
Казалось бы, можно рассчитать общую нагрузку и убедиться, что она не превышает указанных значений. Однако, такой расчёт не будет достаточно объективным. В данном случае правильнее будет исходить из оптимальной распределенной нагрузки на тот или иной грунт, просчитанной именно для плитных оснований. Теорией и практикой применения плитных фундаментов доказано, что если реальная нагрузка не будет отличаться от оптимальных значений более, чем на 20÷25 процентов, стабильность здания, возведенного на таком основании будет гарантирована. То есть, будут исключены две крайности:
— При слишком тяжёлой системе «плита + дом» (с учетом внешних и эксплуатационных нагрузок) сохраняется вероятность постепенного проседания здания в грунт.
— Слишком маленькая суммарная нагрузка – также недопустима, так как даже незначительные колебания грунта будут отражаться на стабильности постройки.
Расчет, заложенный в калькулятор, строится на том, что для начала определяется нагрузка, создаваемая зданием, без учета фундаментной плиты. Затем это значение сравнивается с оптимальным, и получившаяся разница будет перекрываться за счет массы монолитного основания. Зная плотность железобетона, несложно перевести массу в объем, а затем, с учётом площади плиты – прийти к ее оптимальной толщине.
- Все табличные значения, необходимые для расчетов, уже внесены в программу.
- Пользователю будет предложено указать тип грунтов на участке строительства.
- Площадь будущей плиты должна приниматься с таким расчетом, что основание в обязательном порядке выходит за границы периметра здания как минимум на 300÷500 мм.
- Далее, для расчета нагрузки, создаваемой зданием, вносятся его параметры:
- Материал и общая площадь стен и перегородок за вычетом оконных и дверных проемов. Доступны два варианта ввода, например, для внешних несущих стен и для внутренних. Если один из вариантов не используется, площадь стены показывается как «0».
- Материал и площадь перекрытий, также в двух возможных вариантах. Эксплуатационная нагрузка на перекрытия уже учтена алгоритмом расчета.
- Площадь и тип кровельного покрытия. Нагрузка от стропильной системы и утеплителя – уже учтена в программе.
- Крутизна скатов кровли необходима для корректного учета снеговой нагрузки. Кроме того, необходимо по карте схеме (она расположена ниже) определить номер зоны для своего региона.
Карта-схема распределения территории РФ на зоны по степени снеговой нагрузки
Предполагается, что у пользователя уже имеются планы или хотя бы начальные разработки по размерам и материалам будущей постройки. Необходимо будет рассчитать площади – это несложно, особенно если воспользоваться некоторыми советами.
Как быстро и точно рассчитать площадь?
С прямоугольником ни у кого проблем не возникает, но нередко более сложные конфигурации стен, пола или кровли ставят в тупик. Обратитесь к публикации нашего портала, посвященной именно расчётам площадей – там описана методика и приведены удобные калькуляторы.
Результат оптимальной толщины плиты будет выдан в метрах. И вот здесь необходимо сразу оценить его со следующих позиций.
- Оптимальным будет значение от 0,2 до 0,3 метра – такой фундамент полностью оправдан во всех отношениях, то есть он обеспечивает стабильность постройки и выгоден экономически. Как правило, результат округляют до толщины, кратной 50 мм.
- В том случае, если расчет показывает, что требуется плита толщиной более 0,35 м, то не исключено, что для столь легкого здания в имеющихся условиях будет более выгодным ленточный или даже столбчатый фундамент. Следует провести тщательный анализ различных вариантов, не менее надежных, но требующих меньших затрат.
- Если результат меньше 150 мм, а иногда программа может выдать даже отрицательное значение, то планируемый к строительству дом – чрезмерно тяжелый для данных условий в сочетании с плитным фундаментом. Начинать самостоятельное его возведение, без проведения квалифицированных геологических изысканий и профессионального расчета – неблагоразумно, так как это может привести к весьма печальным последствиям.
Плитный фундамент – все «за» и «против»
Более подробно с вопросами, касающимися рекомендуемых случаев применения такого основания, проведения необходимых расчетов и практического строительства монолитного плитного фундамента читатель может познакомиться в специальной публикации нашего портала.
stroyday.ru
Калькулятор расчета материалов фундаментной плиты
Одним из типов мелкозаглубленной основы для дома (с мелким заложением) считается фундаментная монолитная плита. Данный вид сооружения идеально подойдет под каркасные или деревянные дома, гаражи и бани, а также другие здания. Плитный фундамент относят по степени заложения в почву к мелкозаглубленному или незаглубленному сооружению.
В связи с невысокой глубиной заложения, такая основа для дома заглубляется всего на 0,4-0,5 метра, но встречаются моменты, когда частные постройки возводятся с цокольными этажами, в этом случае плитные фундаменты закладываются согласно проекту на расчетную глубину.
В отличие от столбчатых или незаглубленных ленточных каркасов, данный вид основы для дома характеризуется своей жесткой конструкцией.
Представленная онлайн программа-калькулятор может рассчитать
- Нужное количество стройматериалов для раствора: щебень, песок, цемент;
- Объем бетона для фундаментной плиты;
- Количество досок для обустройства опалубки;
- Примерную стоимость стройматериалов;
- Армирование монолитного сооружения (будет зависеть от геологических условий и типа проекта).
Вам необходимо указать все размеры в мм в колонке слева
X — Ширина плиты.
Y — Длина.
H — Высота.
W — Ширина секции (ячейки).
Z — Длина секции (ячейки).
R — Число горизонтальных рядов арматуры.
D — Диаметр арматуры.
В том случае, армирование не используется и данный расчет не требуется, то это поле можно не заполнять.
Для каждого отдельного случая требуется определенное количество цемента, чтобы изготовить 1 м³ бетона.
В первую очередь это будет зависеть от величины наполнителей и их пропорций, желаемой марки полученного раствора и используемой марки цемента.
K — Вес одного цементного мешка, выражается в килограммах.
M — Общее количество мешков с цементом для получения 1 м³ бетонной смеси.
L — Длина доски для опалубки.
T — Толщина.
H — Ширина.
Расчет материалов фундаментной плиты
- Стоимость строительных и сыпучих материалов может сильно варьировать в зависимости от сезона и района страны.
- Пересчитывать стоимость сыпучих материалов необходимо в цену не по объему, а по весу.
- Плита фундаментная — один из разновидностей мелкозаглубленного каркаса.
- Как правило, такая основа для дома выполнена в виде монолита из бетона, расположенного под площадью всей постройки.
- В обязательном порядке используется армирование по объему всего каркаса для устранения деформаций из-за нагрузок на плитный фундамент.
- Для создания несущей конструкции необходимо много арматуры и большой расход раствора, если сравнивать с классическими типами сооружений данного типа. В связи с этим плитный фундамент будет немного дороже, традиционных.
- Расчет объема бетона для правильной прочной заливки или армирующего прута, который используется для каркаса монолита, что позволит предотвратить перерасход вышеупомянутых строительных материалов.
Процесс армирования фундаментной плиты
- Как правило, для заливки монолитного плитного фундамента лучше всего применять бетон класса В и арматуру сечением от 12 до 16 миллиметров, категорически не рекомендуется экономить на этом.
- Армирование выполняется при помощи арматурных сеток, внизу и вверху плиты, которые перевязываются между собой. Это делается специально для того, чтобы получить прочное и жесткое основание, которое позволит выдерживать основе будущего дома любые нагрузки со стороны грунта или здания.
- Для того, чтобы правильно армировать горизонтальную плоскость монолита, нужно вязать сетку из армирующего прута с диаметром 12-16 мм и шагом 200 мм. Чтобы соединить прочно нижние и верхние секции, применяют арматуру диаметром 7-8 мм, которая вяжется с шагом 400х400 мм.
- Чтобы защитить арматурные пруты сверху и снизу, их нужно залить слоем раствора толщиной, как минимум 35 миллиметров.
Заливка монолитной конструкции
Для этого процесса, лучше всего использовать марку бетона М450. Также Вы должны быть уверенными, что Вам не доставят марку М350 и ниже. Класс раствора на прочность сжатия для плит фундаментных должен соответствовать марке В20 (М250), но не ниже. При этом водостойкость должна быть не менее W6. Заявленным критериям соответствуют бетона следующей марки — БСГ В 22,5 П3 F150 W6 и выше.
Для подачи раствора можно использовать лоток из миксера или бетонорукав. Раскидывать готовую смесь правильней всего с дальнего края опалубки. После этого начинаем бетонировать ближний край. В то время как выполняется заливка, один человек должен непрерывно обрабатывать заливку при помощи глубинного вибратора, что позволит получить равномерное распределение смеси по всему объему монолита, удалить воздушные пузырьки и выровнять ее поверхность.
Обязательно следующий день необходимо обильно полить всю поверхность монолитного сооружения водой. Если Вы заливку выполняли в жаркую погоду, то после этого процесса всю поверхность каркаса укрываем обязательно полиэтиленовой пленкой. Переходить к другим работам, можно в том случае, когда бетон набрал уже не менее 70% прочности. При температуре воздуха + 20 С для этого потребуется 7-10 дней. В том случае если температура +10 С и ниже, то следует выждать как минимум 20 дней.
Если ночная и дневная температуры имеют большой перепад, то лучше и правильней всего сориентироваться по среднесуточной температуре.
Теплоизоляция монолитной конструкции
Процесс теплоизоляции выполняется для того, чтобы защитить ее от внешних атмосферных влияний и холода, что позволит сэкономить на обогреве здания. Теплоизоляция фундаментного каркаса повышает температуру под основанием, что позволяет снизить пучение почвы под ней.
o-builder.ru
vest-beton.ru
Расчет бетонной плиты
Площадь плиты: 24 м2Требуемый объем бетона для фундамента: 9.6 м3
Площадь опалубки: 8 квадратных метров, она же площадь боковых поверхностейПри толщине доски опалубки 25 миллиметров количество пиломатериалов: 0.2 м3или 13.33 досок длиной 6000 миллиметров и шириной 100 миллиметров
Расходы
Мешки с цементом по 50 кг
Требуемое кол-во мешков цемента 67.2 (3360 кг)Стоимость цемента 13440
Песок 8400 кгСтоимость песка 2520
Щебень 12096 кгСтоимость щебня 4838.4
Стоимость пиломатериалов 1100
Количество арматуры 380 мВес арматуры 337.2 кгГоризонтальных рядов 11Вертикальных рядов 31Стоимость арматуры 6069.57
Итого: 27967.97
© www.zhitov.ru
www.zhitov.ru