Жб конструкции это: Железобетонные конструкции — история развития и применение

Железобетонные конструкции — история развития и применение

  • Главная

  • >

  • О заводе

  • >

  • Статьи

  • >

  • Железобетонные конструкции — история развития и применение



  Железобетон по сравнению с другими строительными материалами появился сравнительно недавно и почти одновременно в Европе и Америке. Его история насчитывает не более 150 лет. Однако к настоящему времени он получил самое широкое распространение в строительстве, имеет свою историю и своих выдающихся деятелей. 

  Железобетонные конструкции — несущие элементы зданий и сооружений, изготовляемые из железобетона, и сочетания этих элементов.  

  Появление железобетонных конструкций связано с большим ростом промышленности, транспорта и торговли во второй половине XIX в., когда необходимо было строительство новых фабрик, заводов, портов и многих других капитальных сооружений. К этому времени были развиты цементная промышленность и черная металлургия. Им предшествовал многовековой опыт строительства из камня, неармированного бетона, дерева и двухсотлетний опыт строительства из металла. 

  Исследования покрытий Царскосельского Дворца показали, что русские мастера еще в 1802 г. применяли армированный бетон, однако они не считали, что получили новый строительный материал, и не патентовали его. 

  Первым изделием из железобетона была лодка, построенная Ламбо во Франции в 1850 г. Первые патенты на изготовление изделий из железобетона были получены Монье в 1867… 1870 гг. В 1892 г. французский инженер Ф. Геннебик предложил монолитные железобетонные ребристые перекрытия и ряд других рациональных строительных конструкций, и все последующие арматурные чертежи вычерчены условно, будто бетон является прозрачным, а арматура хорошо видимой по всей толще бетона. В России железобетон стали применять с 1886 г. для перекрытий по металлическим балкам. 

  В 1885 г. в Германии инж. Вайс и проф. Баушингер провели первые научные опыты по определению прочности и огнестойкости железобетонных конструкций, сохранности железа в бетоне, сил сцепления арматуры с бетоном и пр. Тогда же впервые инж. М. Кёнен высказал предположение, подтвержденное опытами, что арматура должна располагаться в тех частях конструкции, где можно ожидать растягивающие усилия. 

  В 1886 г. М. Кёнен предложил первый метод расчета железобетонных плит, который способствовал развитию интереса к новому материалу и более широкому распространению железобетона в Германии и Австро-Венгрии. 

  В 1891 г. талантливейший русский строитель проф. Н. А. Белелюбский первым провел серию испытаний железобетонных конструкций: плит, балок, арок, резервуаров, силосов для зерна, моста пролётом 17 м, которые по методике испытаний и полученным результатам во многом превосходили работы зарубежных ученых и послужили базой для широкого распространения железобетона в строительстве. В 1911 г. в России были изданы первые технические условия и нормы для железобетонных сооружений. 

  Время появления предложений Ф. Геннебика, т. е. конец XIX в., можно считать началом первого этапа в развитии железобетона, характеризуемого появлением в практике разного рода железобетонных стержневых систем. С этого времени повсеместно вошел в практику и метод расчета бетонных конструкций по допустимым напряжениям, основанный на законах сопротивления упругих материалов. На развитие железобетона в этот период большое влияние оказали труды ученых Н. М. Абрамова (по расчёту армированного железобетона) и И. Г. Малюги, А. А. Байкова, Н. А. Жидкевича, М. Беляева и др. (по разработке основ технологии бетона). 

  В 1904 г. в г. Николаеве по проекту инженеров Н. Пятницкого и А. Барышникова был построен первый в мире морской маяк из монолитного железобетона высотой 36 м, со стенами толщиной 10 см вверху и до 20 см внизу. Примерно в то же время были осуществлены безбалочные междуэтажные перекрытия склада молочных продуктов в Москве. Приоритет создания этих конструкций принадлежит русскому инженеру, впоследствии выдающемуся ученому проф. А. Ф. Лолейту. Однако в дореволюционной России не было условий для подлинного прогресса в развитии железобетона. 

  Впервые идея предварительного напряжения элементов, работающих на растяжение, была выдвинута и осуществлена в 1861 г. русским артиллерийским инж. А. В. Гадолиным применительно к изготовлению стальных стволов артиллерийских орудий. 

  Вопрос о применении предварительно напряженной арматуры в железобетонных конструкциях был поднят в 1928 г. в работах Э. Фрейссипэ, а затем в работах немецких инженеров Ф. Дишингера, Е. Хойера, У. Финстервальдера и др., послуживших началом практическому применению предварительно напряженных железобетонных конструкций. 

  После революции железобетонное строительство в России получило невиданный в мире размах. Необходимость максимально экономить материал и снижать стоимость железобетонных конструкций вынуждала советскую школу учитывать все наиболее передовое в европейской и американской практике и широко развивать собственные теоретические и экспериментальные исследования в области железобетона. В этих целях, вскоре после революции, был создан ряд научно-исследовательских институтов и лабораторий для теоретического и экспериментального изучения физико-механических свойств бетона и железобетона. В строительных и транспортных вузах были организованы кафедры строительных конструкций. Все это позволило в короткий срок подготовить высококвалифицированных специалистов по железобетону. Это, в свою очередь, способствовало значительному расширению применения железобетона в гидротехническом и жилищно-гражданском строительстве. 

  В 1925… 1932 гг. советские ученые В. М. Келдыш, А. Ф. Лолейт, А. А. Гвоздев. П. Л. Пастернак и другие на базе широких экспериментальных работ разработали общие методы расчета статически неопределимых стержневых систем (арок и рам), которые позволили запроектировать и построить много уникальных для своего времени общественных и промышленных зданий из железобетона: Центральный телеграф, Дом «Известий», здания министерств легкой промышленности и земледелия в Москве, почтамт и Дом промышленности в Харькове, Дома Советов в Ленинграде, Минске, Киеве и ряд других крупных сооружении.  

  В гидротехническом строительстве впервые железобетон был применен при строительстве Волховской ГЭС (1921… 1926 гг.), крупнейшей по тому времени. Плотина сооружалась на железобетонных кессонах, транспортируемых к месту установки на плаву. Главное здание станции железобетонное каркасное, с железобетонными аркадами, поддерживающими путь 130-тонного мостового крана. Так же широко железобетон был применен в главной подстанции и во всех вторичных подстанциях. Волховстрой явился первой большой практической школой советских специалистов по железобетону. Вслед за Волховской ГЭС были построены ДнепроГЭС (1927… 1932 гг.), Нижне-Свирская ГЭС (1928… 1934 гг.), в которых бетон и железобетон применялись еще более широко. 

  Примерно в 1928 г. железобетон стал широко использоваться в строительстве тонкостенных пространственных конструкций: разнообразных оболочках, складах, шатрах, сводах и куполах. Советский ученый В. 3. Власов первым разработал общий практический метод расчета оболочек, значительно опередив зарубежную науку в этой области. В 1937 г. вышла в свет первая в мире «Инструкция по расчету и проектированию тонкостенных покрытий и перекрытий», составленная на основе теоретических и экспериментальных работ, проведенных под руководством А. А. Гвоздева. 

  Первый тонкостенный купол значительного диаметра (28 м) был построен в 1929 г. в Москве для планетария, а самый большой в то время гладкий купол диаметром 55,5 м был сооружен в 1934 г. над зрительным залом театра в Новосибирске. Конструкцию купола разработал инж. Б. Ф. Матери по идее и под руководством П. Л. Пастернака. 

  Применение в строительстве рамных и тонкостенных пространственных систем с использованием их жесткости и монолитности следует считать вторым этапом в развитии железобетона. 

  В 1936 г. в СССР впервые был применен предварительно напряженный железобетон для изготовления опор канатной сети на закавказских железных дорогах. Широкому внедрению предварительно напряженных железобетонных конструкций во многом способствовали работы ученых В. В. Михайлова, А. А. Гвоздева, С. А. Дмитриева и др. 

  Огромную работу по изучению и созданию теории и практики железобетонных конструкций и по разработке наиболее прогрессивных решений проводят Научно-исследовательский институт бетона и железобетона (НИИЖБ) и многие другие научно-исследовательские и проектные институты. 

  На основе глубокого изучения физических и упругопластических свойств железобетона, а также экспериментальных данных А. Ф. Лолейт, А. А. Гвоздев и другие (1931… 1934 гг. ) создали теорию расчета железобетона по разрушающим усилиям. Она была положена в основу норм (ОСТ 90003-38), по которым рассчитывали все промышленные и гражданские здания и сооружения. 

  Широкую индустриализацию железобетонного строительства, развитие предварительно напряженных конструкций, внедрение высокопрочных материалов и разработку нового метода расчета железобетонных конструкций следует считать началом третьего этапа в развитии железобетонных конструкций. Выдающимся примером третьего этапа может служить построенная в 1965 г. башня Большого московского телецентра общей высотой 522 м. Нижняя часть до высоты 385 м выполнена из монолитного предварительно напряженного железобетона. Диаметр башни внизу 18,0 м, а вверху — 8,5 м при толщине стенки соответственно 46 и 30 см. На отметке 65 м ствол башни переходит в коническое основание диаметром по низу 61 м. На высоте 360 м расположены ресторан на 420 человек и смотровые площадки на 600… 700 человек. Нижняя часть конического основания выполнена в виде опорных конструкций (ног) высотой 17,3 м. На отметке 42 м оболочка конического основания имеет диафрагмовое кольцо, воспринимающее усилие от анкеровки канатов предварительно напряженной арматуры. 

  Советские ученые и инженеры осуществляли плодотворные научные и конструкторские исследования по всем направлениям теории и практики железобетона. Накопленный опыт и мощная строительная индустрия являются прочным фундаментом, обеспечивающим дальнейший прогресс железобетонных конструкций в нашей стране.

Типы железобетонных конструкций: особенности и основные виды

Содержание

  • 1 Особенности конструкций
  • 2 Основные виды конструкций
    • 2. 1 Панели
    • 2.2 Фермы
    • 2.3 Балки и ригели
    • 2.4 Сваи
    • 2.5 Стойки
    • 2.6 Колонны
    • 2.7 Объемные блоки
    • 2.8 Санитарно-технические кабины
  • 3 Вывод

Строительство современных объектов не обходится без конструкций из железобетона. У таких сооружений много плюсов. Железный остов со всех сторон защищен бетоном, который имеет длительный срок работы и не боится ни дождя, ни снега, ни жары, ни мороза. Железо плюс бетон – отличный тандем! Железобетонные изделия консолидируют как при растяжении, сжатии и сгибании, так и во время скручивания, срезания. Металлокаркас помогает добиться устойчивости, прочности и твердости сооружения, служит для уменьшения размеров и веса устройства. Применяя различные технологии, изготавливают монолитные, сборные, сборно-монолитные бетонные и железобетонные конструкции с ненапрягаемой и напрягаемой арматурой.

Особенности конструкций

Железобетонная конструкция нашла применение в строительстве жилых зданий, производственных сооружений и инженерных построек. Наиболее часто применяют сборный железобетон, но встречается монолитный и сборно-монолитный. Чтобы получить изделие наименьшей массы, насколько это позволяет технология, снизить расходы на оплату труда и материалы, для железобетонных конструкций применяют качественный бетонный раствор и арматуру высокой прочности.

Основные виды железобетонного изделия применяются в строительстве, где температурный режим не превышает пятидесяти градусов по Цельсию и не опускается до минус семидесяти градусов. Железобетонными конструкциями пользуются чаще стальных или каменных в случае возведения следующих объектов:

  • аэродромы;
  • атомные реакторы;
  • бункера;
  • дымовые трубы большой высоты;
  • различные массивные сооружения;
  • здания складского назначения;
  • дороги;
  • фундаменты;
  • морские сооружения;
  • заводские постройки.

Часто ЖБИ являются основой конструкций промышленных объектов и жилых домов.

В железобетонных конструкциях следующие преимущества:

  • прочность, которая со временем только увеличивается;
  • долговечность;
  • стойкость к воздействию огня;
  • относительно допустимая цена;
  • возможность собственноручного изготовления;
  • стойкость к сейсмической активности;
  • возможность железобетона принимать различные архитектурные формы.

К недостаткам относятся:

  • образование трещин;
  • большой вес;
  • требуется дополнительное утепление;
  • теплопроводность.

Вернуться к оглавлению

Основные виды конструкций

По типу изготовления различают:

  • Сборные. Имеют большую популярность за счет максимально механизированного строительства.
  • Монолитные. Применяют в строительстве монолитных сооружений, например, гидротехнических построек, тяжелых фундаментов.
  • Сборно-монолитные. Сборно-монолитные элементы соединяются как бетоном, так и сваркой.

По сфере использования бывают:

  • для жилых домов;
  • для промышленных построек;
  • для общественных зданий и сооружений.

Изделия из железобетона могут быть: ненапряженные и предварительно напряженные. Наиболее популярные ЖБИ, которые используют для строительства:

  • панелей;
  • фундаментов;
  • балок;
  • плит перекрытий.

Вернуться к оглавлению

Панели

Распространенным видом железобетонных конструкций являются панели, которые используются в строительстве зданий и сооружений жилищного и промышленного назначения. Панель имеет плоскую прямоугольную форму, в которой могут быть проемы для дверей и окон, также – выступы для подоконников.

При перевозке панелей их устанавливают в вертикальном положении под наклоном в десять градусов. Транспортируя сразу несколько панелей, нужно исключить их соприкосновение, поэтому между ними прокладывают подкладки.

Вернуться к оглавлению

Фермы

Железобетонные фермы используют для перекрытий в производственных сооружениях и культурных зданиях. Имеют вид плоской прямоугольной конструкции с решетками. При транспортировке изделий им придают вертикальное положение.

Фермы из железобетона имеют высокую прочность, жесткость, отличаются противопожарными свойствами и морозостойкостью. Производятся изделия из тяжелого, легкого или конструкционного бетона, в основном это аглопоритобетон и керамзитобетон. Применяя железобетонную ферму, следует тщательно подойти к ее установке. Проводят точный расчет несущей способности постройки. Проверяют качество элементов, размеры и готовят место опоры.

Вернуться к оглавлению

Балки и ригели

Ригель железобетонный.

Балки и ригели нашли применение в строительстве фундаментов и покрытий, они выступают в роли несущих элементов для монтажа крановых механизмов. Балки производят односкатными, 2-скатными или прямоугольными. В процессе транспортировки балки ригели устанавливают в транспортное средство вертикально. Для опоры балок и ригель используют подкладки, установленные под нижнюю плоскость изделий. В зависимости от длины конструкции определяется расстояние между подкладками. Сбоку балок и ригелей проводят крепление по всей их высоте. Перевозка балок допускается только в вертикальном положении, горизонтальная транспортировка запрещена, так как существует риск разрушения изделий. Транспортируя одновременно несколько элементов, между ними прокладывают разделители толщиной больше десяти сантиметров.

Вернуться к оглавлению

Сваи

Железобетонную конструкцию в виде свай используют для оснований промышленных и жилых сооружений. Сваи применяют для возведения конструкций на неустойчивых грунтах. При транспортировке свай им придают горизонтальное положение, обеспечивая опирание на специальные подкладки. Разрешается укладка свай на транспортное средство при перевозке ярусами.

Железобетонные сваи отличаются высокой устойчивостью к воздействию химических веществ и коррозии, обладают водонепроницаемостью и морозостойкостью. Сваи легко монтируются при наличии специального оборудования и способны обеспечить возводимому сооружению долговечность, высокую прочность и надежность.

Вернуться к оглавлению

Стойки

Стойки для опор ЛЭП.

Железобетонные стойки или стойки линий электропередач представляют собой опорный элемент для светильников и линий электропередач. При транспортировке разрешается перевозить стойки вместе одной группой, обеспечивая горизонтальное положение. При перевозке следует подготовить опору для стоек в виде специальной подкладки.

Главным назначением железобетонных стоек является возможность надежного удержания электропроводов на требуемом расстоянии от поверхности земли или воды. Надежность и прочность опор достигается путем применения в конструкции изделий арматурного каркаса и специального типа бетонного раствора. По отдельности каждая стойка линий электропередач различается по назначению и конструкции. Выделяют концевые, промежуточные, угловые и анкерные опоры из железобетона. Также изготавливают одноцепные и многоцепные.

Вернуться к оглавлению

Колонны

Железобетонная колонна представляет собой несущий элемент жилых, культурных, промышленных и бытовых сооружений. Колонны изготавливают прямоугольной формы и двухветвевой, которая предназначена для тяжелой крановой нагрузки. Перевозят элементы штабелем, где первый ряд колонн кладут на грузовое место транспортного средства, а последующие ряды укладывают на предыдущий, застеленный специальными подкладками.

Вернуться к оглавлению

Объемные блоки

Объемные блоки.

Железобетонные объемные блоки нашли применение при возведении общественных и жилых сооружениях. Представляют собой почти готовые строительные элементы с полой тонкостенной прямоугольной призмой и с проемами для дверей и окон.

Объемные блоки могут иметь изоляционные и утеплительные панели. При перевозке объемных блоков им придают вертикальное положение, при этом обеспечивая опирание элементов по четырем углам на грузовую платформу. Объемные блоки, выполненные из железобетона, имеют чувствительность к динамическим перегрузам, которые образуются в процессе перевозки. Эти строительные изделия из железобетона имеют особенность смещать центр тяжести от геометрического центра в поперечном и в продольном направлении. Чтобы избежать смещения блока в процессе перевозки, на грузовой площадке устанавливают специальные упорные выступы.

Вернуться к оглавлению

Санитарно-технические кабины

Санитарно-технические кабины используются при возведении зданий общественного и жилого назначений. Представлены объемными элементами с большой массой и габаритами. При перевозке шахты лифтов и санитарно-технических кабин разрешается вертикальное положение с опорой на грузовую площадку с двумя прокладками. Шахты лифтов, имеющие высоту до 140 сантиметров можно перевозить в 2 яруса по высоте, при этом устанавливая деревянные подкладки между рядами в высоту больше 10 сантиметров.

Вернуться к оглавлению

Вывод

Железобетонные конструкции применяют в строительстве различных зданий и сооружений, и не только. Разновидности ЖБИ (панели, объемные блоки, фермы, сантехнические кабины) за счет своих габаритов, масс и условий, которые нужно соблюдать в процессе перевозки, требуют узкой специализации подвижного состава.

Транспортировка балок, колонн, опор и стоек линий электропередач, ригелей и свай имеет схожие требования к перевозочному процессу, поэтому схемы подвижного состава для их перевозки могут совпадать.

Железобетонные конструкции: обычный железобетон в сравнении с предварительно напряженным бетоном

Термины, которые следует знать:

  • пост-натяжение: метод предварительного напряжения, при котором стальные пряди натягиваются после заливки бетона
  • предварительно напряженный: бетон, который подвергается внутренним напряжениям от армирующих стальных прядей для компенсации напряжения растяжения будущих нагрузок
  • предварительное натяжение: метод предварительного напряжения, при котором стальные пряди натягиваются перед заливкой бетона
  • Арматура

  • : прозвище арматурного стержня, используемого для повышения прочности бетона на растяжение
  • .

  • арматурный стержень (арматура): стальные стержни, пряди или металлическая ткань, помещенные в бетонные плиты, балки или колонны для повышения их прочности
  • железобетон (ЖБ): композит из двух материалов: бетона и арматурной стали (стержни и сетка), использующий лучшее из обоих свойств

Механика материалов

Механика материалов — это термин, используемый для описания того, как различные типы материалов ведут себя под нагрузкой. В этой статье основное внимание уделяется тому, как ведет себя бетон при сжимающих и растягивающих нагрузках. Мы также рассмотрим некоторые из методов, применяемых для устранения слабых сторон материала, что в результате делает бетон прочным и, следовательно, обычным материалом, используемым в качестве конструкционного компонента в коммерческих зданиях.

Стандартный бетон хорошо реагирует на сжимающее напряжение, но плохо на растягивающее; поэтому армирование используется для повышения прочности материала. Бетон сопротивляется напряжению сжатия, а арматура обеспечивает прочность против напряжения растяжения.

ПРИМЕЧАНИЕ. Бетон расширяется или растягивается при растягивающем напряжении и сжимается или укорачивается при сжимающем напряжении .

Бетон обычно считается хрупким материалом; таким образом, без армирования он будет испытывать хрупкое разрушение как вид отказа. Хрупкий излом — это вид разрушения при растяжении, означающий, что до полной потери прочности материал практически не проявляет признаков того, что что-то не так. Окончательный отказ является относительно внезапным. Армирование в бетоне изменяет режим хрупкого разрушения на вязкое разрушение; поэтому до полной потери прочности станут видны трещины. Следовательно, существует видимое предупреждение перед окончательным отказом.

Механика бетона говорит нам, что бетон сам по себе не является хорошим конструкционным материалом, тем более что бетон в процессе эксплуатации подвергается значительному растягивающему напряжению и различным нагрузкам. Таким образом, весь бетон армируется, чтобы противостоять приложенным растягивающим усилиям и контролировать развитие растрескивания при растяжении под нагрузкой.

Железобетон

Железобетон (ЖБ) представляет собой смесь двух материалов: бетона и арматурной стали (стержни и сетки). Арматурная сталь, также называемая арматурой, встраивается в бетон, чтобы два материала могли совместно противостоять приложенным силам. Обратите внимание, что арматурная сталь, установленная таким образом, часто называется обычной или обычной арматурой.

Обычная арматура — это форма пассивной арматуры, при которой арматурная сталь не сопротивляется натяжению до тех пор, пока не растянется, что часто означает, что бетон должен треснуть, прежде чем арматурная сталь сможет противостоять растягивающему напряжению. Другими словами, растрескивание может активировать прочность арматурной стали, поэтому деформация бетона может присутствовать, но поддается управлению материалом. Арматурную сталь часто укладывают вверху и внизу плит.

Обычный армированный бетон также может быть дополнен предварительно натянутыми или постнапряженными стальными арматурными прядями. Когда эти методы реализованы, материал в совокупности называется предварительно напряженным бетоном. Это форма активной арматуры, которая, как следует из названия, означает, что бетон подвергается предварительному напряжению перед вводом в эксплуатацию. Предварительно напрягается за счет растяжения (натяжения) прядей стальной арматуры.

Два метода предварительного напряжения описаны ниже:

  1. Предварительное натяжение: Бетон заливается вокруг предварительно натянутых прядей стальной арматуры. Эти пряди натянуты на бетонный каркас между двумя точками крепления. Бетон приклеивается к стальным прядям, и как только бетон достигает заданной прочности на сжатие, прядки стальной арматуры освобождаются. В этом методе, когда бетон затвердевает и предварительно натянутые пряди стальной арматуры освобождаются, напряжение передается внутрь бетона в виде сжатия за счет трения с арматурой.
  2. Последующее натяжение: Бетон заливается вокруг рукавов или воздуховодов, и через них продеваются арматурные пряди для предварительного натяжения. Как только бетон достигает заданной прочности на сжатие, пряди стальной арматуры растягиваются с помощью гидравлических домкратов и постоянно закрепляются на каждом конце. Гильзы или трубы обычно заполняются цементным раствором. Последующее натяжение также достигается за счет того, что пряди стальной арматуры в некоторой степени могут свободно перемещаться в бетоне. В этом случае прядь стальной арматуры смазывают антикоррозионной смазкой и обшивают. Это называется несвязанным пост-натяжением. В этом методе к бетону применяется постоянное сжатие, когда прядь стальной арматуры постоянно закреплена.

В обоих методах предварительного напряжения растяжение прядей является формой напряжения, которое сжимает бетон. Это, в свою очередь, создает внутренние напряжения, которые противодействуют напряжениям растяжения от будущих эксплуатационных нагрузок. Подводя итог, можно сказать, что предварительное напряжение повышает прочность бетона на растяжение, поскольку будущие эксплуатационные нагрузки должны компенсировать предварительное напряжение сжатия. Предварительно напряженный бетон часто используется в проектах гражданского строительства, таких как настилы мостов, а также в следующих элементах коммерческих зданий: балконах, перемычках, плитах перекрытий, балках, фундаментных слоях и конструкциях парковок.

Распространенные дефекты железобетона

Трещины — распространенный и хорошо заметный дефект железобетона. Инспекторы должны учитывать, что не все наблюдаемые трещины могут негативно повлиять на структурную целостность бетонных элементов. Один тип трещин называется пластической осадкой, и он обычно образуется над стальной арматурой и выровнен по ней. Другой тип растрескивания называется коррозией арматуры и также образуется над арматурой. Некоторые дефекты появляются в течение нескольких часов после затвердевания бетона, в то время как для развития других требуются годы. В любом случае инспекторы должны сообщать о признаках трещин в соответствии с их расположением и характеристиками.

Нуждается ли бетон в качестве конструктивного элемента в армировании?

Стандартный бетон без армирования не подходит для использования в качестве конструкционного элемента в коммерческих зданиях, поскольку он имеет низкую прочность на растяжение и под нагрузкой развивается растрескивание при растяжении. Естественно, бетон хорошо реагирует на сжимающее напряжение; таким образом, армирование используется для обеспечения прочности против растягивающего напряжения и для подавления растрескивания (и полного разрушения).

При этом бетон, испытывающий значительные прилагаемые нагрузки, должен иметь армирование. Но хотя армирование делает бетон прочнее, некоторые бетонные конструкции и элементы могут не иметь армирования или нуждаться в нем. Это включает в себя подъезды к жилым домам, полы в гаражах и ступени.

Заключение

Решения о том, какие материалы использовать при строительстве различных типов коммерческих сооружений, принимаются на стадии предварительного проектирования. Бетонные конструктивные элементы могут включать балки и колонны, рамы, диафрагмы и/или стены жесткости. Инспекторам коммерческой недвижимости важно понимать базовую механику обычных материалов и методов, включая предварительное напряжение бетона, чтобы компетентно проверять и составлять отчеты о большинстве коммерческих конструкций.

Бетонные конструкции и методы их возведения могут быть довольно сложными. Инспекторы коммерческой недвижимости должны иметь профессионального инженера или специалиста по ремонту и техническому обслуживанию бетона в своей команде специальных консультантов. Некоторые инженеры проводят всю свою карьеру, изучая и специализируясь на технологиях строительства из бетона.

 

Дополнительные ресурсы для инспекторов коммерческой недвижимости:

  • Курс оценки конструкций коммерческих зданий
  • Контрольный список структурной оценки
  • Типы систем сопротивления боковым силам в коммерческих зданиях

От редакции: Коррозия железобетонных конструкций

Введение и область применения

Коррозия железобетонных конструкций в настоящее время является одной из основных проблем, связанных с долговечностью и эксплуатационной надежностью зданий и сооружений. Управление коррозией и мониторинг инфраструктуры и инженерных сооружений необходимы для гарантии их срока службы. Современное общество требует новых материалов; тогда методы диагностики и компьютерное моделирование могут способствовать повышению коррозионной стойкости, тем самым повышая безопасность и продлевая срок службы железобетонных конструкций.

Устойчивость железобетонных конструкций имеет решающее значение для лучшего социального развития из-за важности структурной безопасности, сохранения окружающей среды и экономии. В развитых странах экономические потери от коррозии, связанные с техническим обслуживанием, ремонтом и заменой существующих конструкций и инфраструктуры, составляют до 4% валового внутреннего продукта (ВВП). Стоит отметить, что производство новых материалов не только затратно, но и требует больших затрат энергии, что резко влияет на парниковый эффект из-за СО 2 выбросы.

В последние годы разработка новых технологий, материалов и стратегий защиты от коррозии способствует лучшему пониманию явлений коррозии стали в бетоне. Разработка новых датчиков, встроенных в бетон, дает огромные преимущества для мониторинга коррозии и оценки риска железобетонных конструкций. Кроме того, новые локальные электрохимические методы способствуют выяснению механизма коррозии. Усилия по лучшему пониманию растрескивания под воздействием окружающей среды, сочетающего электрохимические и механические характеристики, представляют большой интерес для выяснения коррозии стали в бетоне. Новые тенденции в борьбе с коррозией железобетонных конструкций сосредоточены на использовании арматуры из нержавеющей стали, ингибиторов коррозии, интеллектуальных покрытий, катодной защиты и новых геополимерных вяжущих материалов.

Эта тема исследования «Коррозия железобетонных конструкций» направлена ​​на то, чтобы охватить все основные аспекты коррозии стали в бетоне — от экспериментальных исследований до прогнозного моделирования. Включен широкий спектр исследований, охватывающих очень интересные темы, такие как точечная коррозия, равномерная коррозия, коррозионное растрескивание под напряжением, прогнозирование срока службы, электрохимические методы и методы определения характеристик поверхности.

Вклады

Содержание этой темы исследования включает пять различных статей, посвященных коррозии железобетонных конструкций.

Моралес и др. изучили фактор точечной коррозии на арматуре из углеродистой стали для оценки срока службы предварительно напряженной конструкции в агрессивной среде и пришли к выводу, что значение фактора точечной коррозии варьируется от 1,20 до 1,85. Срок службы арматуры может быть значительно снижен при рабочем напряжении в 70% от предельной нагрузки на стержень.

Касторена-Гонсалес и др. предложил новую прогностическую модель, использующую функцию коррозионного повреждения с помощью анализа трехмерного моделирования методом конечных элементов (МКЭ) ширины трещины покрытия на поверхности железобетона. Модель основана на геометрии, глубине свободного бетонного покрытия, диаметре стальной арматуры, длине анодной зоны и механических свойствах бетона: модуле упругости, прочности на растяжение и модуле Пуассона. Был сделан вывод, что перед стадией зарождения трещины важны свойства материала и геометрический массив; однако на стадиях роста и распространения трещины они становятся менее значительными.

В работе Baltazar-Zamora et al. было представлено коррозионное поведение оцинкованной стали, встроенной в бетон, используемой в инфраструктуре, такой как мосты, здания и тротуары, подверженные воздействию почвы, загрязненной хлоридами.

Ту и др. предложил вычислительный метод для решения задачи мониторинга деградации прочности на растяжение арматуры из армированного стекловолокном полимера (GFRP) в течение срока службы. Было обнаружено, что закон деградации прочности при растяжении, основанный на теории Аррениуса, применим и к модулю упругости.

Монтойя и Нагель представили имитационное исследование методом МКЭ капиллярного водопоглощения и переноса хлоридов в строительном растворе. Модель описывает явление водопоглощения в образцах строительных растворов, подверженных атмосферной коррозии, с использованием уравнения Ричарда и процесса испарения воды.

Выводы и предостережения

Эта тема исследования «Коррозия железобетонных конструкций» сосредоточена на современных тенденциях в науке, технике и технологии коррозии, от фундаментальных до прикладных исследований, таким образом, охватывая темы, связанные с механизмом коррозии, моделированием и защитой и стратегии смягчения.

Таким образом, для прогнозирования коррозионных повреждений и срока службы необходимо разработать новые модели, которые связывают ускоренные лабораторные испытания и испытания на естественное воздействие коррозии на месте. Дальнейшие исследования передовых материалов, диагностических инструментов и методов характеризации вместе с моделированием предусмотрят многообещающий сценарий для полного понимания механизмов коррозии. Поэтому новые стратегии будут обеспечивать безопасность и продление срока службы железобетонных конструкций.

Тема исследования «Коррозия железобетонных конструкций» представляет собой сборник исследовательских статей, охватывающих актуальные темы и современное состояние дел в этой области. Как приглашенные редакторы, мы надеемся, что этот сборник оригинальных исследовательских статей и обзоров может быть полезен исследователям, работающим в этой области, способствуя большему количеству исследований, дебатов и дискуссий, которые продолжат проливать свет и устранять пробелы в понимании коррозии и защиты.